خيارات البحث
النتائج 151 - 160 من 4,038
Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China النص الكامل
2016
Ni, Zhaokui | Wang, Shengrui | Wang, Yuemin
This study aims to establish the relative importance of sediment organic phosphorus (Po) to the total P and the major classes of organic molecules that contribute to sediment Po, determined by measuring their susceptibility to enzymatic hydrolysis, across a suite of lakes ranging from oligotrophic to eutrophic status. The results showed that Po accounted for 21–60% of total P, and bioavailable Po accounted for 9–34% of Po in the sediments. The bioavailable Po includes mainly labile (H2O-Po) and moderately labile (NaOH-Po) P forms. For H2O-Po (accounting for only1.4% of Po), 53% (average) was labile monoester P, 28% was diester P and 17% was phytate-like P. For NaOH-Po (accounting for 9–33% of Po), 32% was labile monoester P, 33% was phytate-like P and 18% was diester P. The composition of bioavailable Po, determined by enzyme assays, was related to the lake nutrient levels, which implies that sediment bioavailable Po could act as an effective indicator for lake eutrophic status. With the increase of lake nutrient levels, bioavailable Po content and alkaline phosphatase activity in the sediment all increased, indicating that Po represents an important and bioavailable source of P that increases with eutrophication, and could contribute to internal loading and resistance of eutrophic lakes to remediation. This implies that eutrophic lakes would maintain long-term eutrophic status and algal bloom phenomena even after the external input of P was controlled and the total P concentration of water has declined. Thus, in order to reduce the release risk of sediment P more efficiently and effectively, sediment P control technique should focus not only on reducing the total P and inorganic P, but should also pay close attention to the removal of bioavailable Po.
اظهر المزيد [+] اقل [-]The identification of the metabolites of chlorothalonil in zebrafish (Danio rerio) and their embryo toxicity and endocrine effects at environmentally relevant levels النص الكامل
2016
Zhang, Quan | Ji, Chenyang | Yan, Lu | Lu, Meiya | Lu, Chensheng | Zhao, Meirong
Chlorothalonil is a broad spectrum fungicide with high annual production and environmental contamination. Despite its high consumption, studies regarding the potential ecological risks of chlorothalonil, especially its metabolites, to aquatic organisms are still limited. In this study, we selected the zebrafish (Danio rerio) as the in vivo model and first identified the metabolite (4-hydroxychlorothalonil) of chlorothalonil in zebrafish by tandem quadrupole/orthogonal-acceleration time-of-flight (Q-TOF). Then, the in vivo and in vitro models were applied to comprehensively estimate the embryo toxicity and potential endocrine effect of chlorothalonil and 4-hydroxychlorothalonil. The data from zebrafish embryo toxicity showed that the lowest observed effect concentrations of both chlorothalonil and 4-hydroxychlorothalonil were 50 μg/L after 96 h of exposure. The mortality rate of the 4-hydroxychlorothalonil was 2.6-fold higher than that of the parent compound at the concentration of 50 μg/L. Dual-luciferase reporter gene assays indicated that both chlorothalonil and 4-hydroxychlorothalonil exerted estrogen receptor α (ERα) agonist activity with REC20 values of 2.4 × 10−8 M and 3.6 × 10−8 M, respectively. However, only 4-hydroxychlorothalonil exhibited both thyroid receptor β (TRβ) agonistic and antagonistic activities. Lastly, we employed molecular docking to predict the binding affinity of chlorothalonil and 4-hydroxychlorothalonil with ERα or TRβ. The results revealed that the potential endocrine effect of chlorothalonil and 4-hydroxychlorothaloni might be attributed to the different binding affinities with the receptors. In conclusion, our studies revealed that 4-hydroxychlorothalonil exhibited potent endocrine-disrupting effects compared to its parent compound, chlorothalonil. The results provided here remind us that the assessment of the potential ecological and health risks of the metabolites of fungicides in addition to their parent compounds should arouse great concerns.
اظهر المزيد [+] اقل [-]Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite النص الكامل
2016
Li, Heng-Xiang | Orihuela, Beatriz | Zhu, Mei | Rittschof, Daniel
Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes.
اظهر المزيد [+] اقل [-]Anthropogenic noise disrupts use of vocal information about predation risk النص الكامل
2016
Kern, Julie M. | Radford, Andrew N.
Anthropogenic noise is rapidly becoming a universal environmental feature. While the impacts of such additional noise on avian sexual signals are well documented, our understanding of its effect in other terrestrial taxa, on other vocalisations, and on receivers is more limited. Little is known, for example, about the influence of anthropogenic noise on responses to vocalisations relating to predation risk, despite the potential fitness consequences. We use playback experiments to investigate the impact of traffic noise on the responses of foraging dwarf mongooses (Helogale parvula) to surveillance calls produced by sentinels, individuals scanning for danger from a raised position whose presence usually results in reduced vigilance by foragers. Foragers exhibited a lessened response to surveillance calls in traffic-noise compared to ambient-sound playback, increasing personal vigilance. A second playback experiment, using noise playbacks without surveillance calls, suggests that the increased vigilance could arise in part from the direct influence of additional noise as there was an increase in response to traffic-noise playback alone. Acoustic masking could also play a role. Foragers maintained the ability to distinguish between sentinels of different dominance class, increasing personal vigilance when presented with subordinate surveillance calls compared to calls of a dominant groupmate in both noise treatments, suggesting complete masking was not occurring. However, an acoustic-transmission experiment showed that while surveillance calls were potentially audible during approaching traffic noise, they were probably inaudible during peak traffic intensity noise. While recent work has demonstrated detrimental effects of anthropogenic noise on defensive responses to actual predatory attacks, which are relatively rare, our results provide evidence of a potentially more widespread influence since animals should constantly assess background risk to optimise the foraging–vigilance trade-off.
اظهر المزيد [+] اقل [-]Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable النص الكامل
2016
Mariet, Anne-Lise | de Vaufleury, Annette | Bégeot, Carole | Walter-Simonnet, Anne-Véronique | Gimbert, Frédéric
Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable النص الكامل
2016
Mariet, Anne-Lise | de Vaufleury, Annette | Bégeot, Carole | Walter-Simonnet, Anne-Véronique | Gimbert, Frédéric
Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former PbAg mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment.
اظهر المزيد [+] اقل [-]Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable النص الكامل
2016
Mariet, Anne-Lise | de Vaufleury, Annette | Bégeot, Carole | Walter-Simonnet, Anne-Véronique | Gimbert, Frédéric | Université Bourgogne Franche-Comté [COMUE] (UBFC) | Funding Agency and Grant Number : French "Agence de l'Environnement et de la Maitrise de l'Energie" (ADEME); Conseil Regional de Franche-Comte; University of Franche-Comte (BQR PRES); French national program EC2CO-Ecodyn (POLMIN); University of Bourgogne (BQR PRES)
International audience | Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former Pb-Ag mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment. (C) 2016 Elsevier Ltd. All rights reserved.
اظهر المزيد [+] اقل [-]A national level assessment of metal contamination in bats النص الكامل
2016
Hernout, Béatrice V. | Arnold, Kathryn E. | McClean, Colin J. | Walls, Michael | Baxter, Malcolm | Boxall, Alistair B.A.
Many populations of bat species across the globe are declining, with chemical contamination one of many potential stressors implicated in these demographic changes. Metals still contaminate a wide range of habitats, but the risks to bats remain poorly understood. This study is the first to present a national scale assessment of toxic metal (Cd, Pb) and essential trace metal (Cu, Zn) concentrations in bats. Metal concentrations in tissues (kidneys, liver, stomach -stomach content, bones and fur) were measured in 193 Pipistrellus sp. in England and Wales using ICP-MS, and compared to critical toxic concentrations for small mammals. The concentrations of metals determined in bat tissues were generally lower than those reported elsewhere. Strong positive associations were found between concentrations in tissues for a given metal (liver and kidneys for Cd, Cu and Pb; stomach and fur and fur and bones for Pb), suggesting recent as well as long term exposure to these contaminants. In addition, positive correlations between concentrations of different metals in the same tissues (Cd and Zn, Cu and Zn, Cd and Pb, Pb and Zn) suggest a co-exposure of metals to bats. Approximately 21% of the bats sampled contained residues of at least one metal at concentrations high enough to elicit toxic effects (associated with kidney damage), or to be above the upper level measured in other mammal species. Pb was found to pose the greatest risk (with 7–11% of the bats containing concentrations of toxicological concern), followed by Cu (4–9%), Zn (0.5–5.2%) and Cd (0%). Our data suggest that leaching of metals into our storage matrix, formaldehyde, may have occurred, especially for Cu. The overall findings suggest that metal contamination is an environmental stressor affecting bat populations, and that further research is needed into the direct links between metal contamination and bat population declines worldwide.
اظهر المزيد [+] اقل [-]Chronic perfluorooctanesulphonic acid (PFOS) exposure produces estrogenic effects in zebrafish النص الكامل
2016
Chen, Jiangfei | Wang, Xiaotong | Ge, Xiaoqing | Wang, Dingding | Wang, Ting | Zhang, Lingnan | Tanguay, Robert L. | Simonich, Michael | Huang, Changjiang | Dong, Qiaoxiang
Perfluorooctanesulphonic acid (PFOS) is a ubiquitous contaminant in the aquatic environment and our earlier studies demonstrated that chronic PFOS exposures lead to a female-biased sex ratio and decreased sperm quality in male zebrafish. The underlying mechanism for these reproductive effects is unknown. In the present study, 8 h post-fertilization (hpf) zebrafish were exposed to PFOS at 250 μg/L for 5 months, and the levels of sex hormones, expression of sex determination related genes, and histological and ultrastructural changes of gonads were fully characterized. During the sex differentiation period, we observed elevated estradiol (E2) and decreased testosterone (T) levels in whole tissue homogenates from PFOS exposed juveniles. In fully mature adult male fish, serum E2 levels were slightly increased, however, the estrogen receptor alpha (esr1) was significantly elevated in PFOS treated male gonads. Histological and electron microscopic examinations revealed structural changes in the gonads of PFOS exposed male and female adult zebrafish. In summary, chronic PFOS exposure disrupts sex hormone level and related gene expression and impairs gonadal development, which may contribute to the previously reported PFOS reproductive toxicity.
اظهر المزيد [+] اقل [-]Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters النص الكامل
2016
Li, Ling | Sillanpää, Markus | Risto, Maarit
With the increasing usage of titanium dioxide nanoparticles (NPs), their release into the environment makes it important to understand their transport, fate and behaviour in natural waters. In this study, aggregation and deposition of TiO2 NPs were studied during a 3-h period by using a dynamic light scattering instrument and a UV–vis spectrophotometer, respectively. TiO2 NPs were spiked in 34 lake and 5 brackish water samples at an initial concentration of 10 mg L−1. Depending on the physicochemical properties of the natural waters, TiO2 NPs exhibited different colloidal stability. In brackish waters with high salinity, TiO2 NPs were prone to aggregate and settled rapidly. Whereas under conditions of humic and humus-poor lake waters, TiO2 NPs were suspended in water column for a longer time without remarkable change in particle size and concentration. Deposition likely occurred in nutrient-rich lakes which had high amount of nitrogen and phosphorus accompanied by high values of conductivity, alkalinity, pH and turbidity. Linear regression analysis revealed the statistically significant relationships (p ≤ 0.008) between the TiO2 NPs stability and these water properties. Our study makes a better understanding of the water properties that control the aggregation and deposition of TiO2 NPs in complex natural waters.
اظهر المزيد [+] اقل [-]Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules النص الكامل
2016
Chayawan, | Vikas,
This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment.
اظهر المزيد [+] اقل [-]Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment النص الكامل
2016
Mishra, Nitika | Ayoko, G. A. (Godwin A.) | Morawska, L. (Lidia)
Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas.
اظهر المزيد [+] اقل [-]