خيارات البحث
النتائج 1551 - 1560 من 6,546
High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces النص الكامل
2020
Zhao, Huiru | Sun, Ruonan | Yu, Pingfeng | Alvarez, Pedro J.J.
This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10⁹, 10⁸, 10⁹, and 10¹⁰ copies/g dry feces for tetW, blaTEM, sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10⁷ copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.
اظهر المزيد [+] اقل [-]Disentangling the effects of habitat biogeochemistry, food web structure, and diet composition on mercury bioaccumulation in a wetland bird النص الكامل
2020
Hall, Laurie A. | Woo, Isa | Marvin-DiPasquale, Mark | Tsao, Danika C. | Krabbenhoft, David P. | Takekawa, John Y. | De La Cruz, Susan E.W.
Methylmercury (MeHg) is a globally pervasive contaminant with known toxicity to humans and wildlife. Several sources of variation can lead to spatial differences in MeHg bioaccumulation within a species including: biogeochemical processes that influence MeHg production and availability within an organism’s home range; trophic positions of consumers and MeHg biomagnification efficiency in food webs; and individual prey preferences that influence diet composition. To better understand spatial variation in MeHg bioaccumulation within a species, we evaluated the effects of habitat biogeochemistry, food web structure, and diet composition in the wetland-obligate California black rail (Laterallus jamaicensis coturniculus) at three wetlands along the Petaluma River in northern San Francisco Bay, California, USA. The concentration of MeHg in sediments differed significantly among wetlands. We identified three sediment and porewater measurements that contributed significantly to a discriminant function explaining differences in habitat biogeochemistry among wetlands: the porewater concentration of ferrous iron, the percent organic matter, and the sediment MeHg concentration. Food web structure and biomagnification efficiency were similar among wetlands, with trophic magnification factors for MeHg ranging from 1.84 to 2.59. In addition, regurgitation samples indicated that black rails were dietary generalists with similar diets among wetlands (percent similarity indices > 70%). Given the similarities in diet composition, food web structure, and MeHg biomagnification efficiency among wetlands, we concluded that variation in habitat biogeochemistry and associated sediment MeHg production was the primary driver of differences in MeHg concentrations among black rails from different wetlands.
اظهر المزيد [+] اقل [-]Toxicity, uptake and transport mechanisms of dual-modal polymer dots in penny grass (Hydrocotyle vulgaris L.) النص الكامل
2020
Li, Jingru | Li, Yao | Tang, Shiyi | Zhang, Yufan | Zhang, Juxiang | Li, Yuqiao | Xiong, Liqin
The use of polymers such as plastic has become an important part of daily life, and in aqueous environments, these polymers are considered as pollutants. When macropolymers are reduced to the nanoscale, their small particle size and large specific surface area facilitate their uptake by plants, which has a significant impact on aquatic plants. Therefore, it is essential to study the pollution of nanoscale polymers in the aquatic environment. In this work, we prepared nanoscale polymer dots (Pdots) and explored their toxicity, uptake and transport mechanisms in penny grass. From toxicological studies, in the absence of other nutrients, the cell structure, physiological parameters (total soluble protein and chlorophyll) and biochemical parameters (malondialdehyde) do not show significant changes over at least five days. Through in vivo fluorescence and photoacoustic (PA) imaging, the transport location can be visually detected accurately, and the transport rate can be analyzed without destroying the plants. Moreover, through ex vivo fluorescence imaging, we found that different types of Pdots have various uptake and transport mechanisms in stems and blades. It may be due to the differences in ligands, particle sizes, and oil-water partition coefficients of Pdots. By understanding how Pdots interact with plants, a corresponding method can be developed to prevent them from entering plants, thus avoiding the toxicity from accumulation. Therefore, the results of this study also provide the basis for subsequent prevention work.
اظهر المزيد [+] اقل [-]Emergent contaminants in sediments and fishes from the Tamsui River (Taiwan): Their spatial-temporal distribution and risk to aquatic ecosystems and human health النص الكامل
2020
Lee, Ching-Chang | Hsieh, Chia-Yi | Chen, Colin S. | Tien, Chien-Jung
The occurrence of emergent contaminants, 24 polybrominated diphenyl ethers (PBDEs), di(2-ethylhexyl)phthalate (DEHP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP), bisphenol A (BPA) and nonylphenol (NP), was investigated in sediments and fishes collected from the Tamsui River system to determine the factors that influence their distribution and their risk to aquatic ecosystems and human health. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in sediments were 1–955, ND-23570, <50–411, <50–430, ND-80, ND-<50, ND-<50, 1–144, 3–19624 μg/kg dw, respectively. The spatial-temporal distribution trends of these compounds in sediments could be attributed to urbanization, industrial discharge and effluents from wastewater treatment plants. The PBDE congener distribution patterns (BDE-209 was the dominant congener) in sediments reflected the occurrence of debromination of BDE-209 and the elution of penta-BDE from the treated products. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in fish muscles were 2–66, 17–1046, <10–231, <10–66, <30, ND-<30, ND-<30, 0.4–7 and 3–440 μg/kg ww, respectively. The species-specific bioaccumulation of these compounds by fish was found and four species particularly showed high bioaccumulation potential. BDE-47 was the predominant BDE congener in fish muscles, suggesting high bioavailability and bioaccumulation of this compound. The results of biota–sediment accumulation factors showed that BDE-47, 99, 100, 153 and 154 had relatively high bioavailability and bioaccumulation potential for some fish species. The ecological risk assessment showed that the concentrations of BPA and NP in sediments were likely to have adverse effects on aquatic organisms (risk quotients > 1). The human health risk assessment according to hazard quotients (HQs) and carcinogenic risks (CRs) revealed no remarkable risk to human health through consumption of fish contaminated with BDE-47, 99, 100, 154, 209, DEHP, BPA and NP.
اظهر المزيد [+] اقل [-]Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks النص الكامل
2020
Kuerban, Mireadili | Waili, Yizaitiguli | Fan, Fan | Liu, Ye | Qin, Wei | Dore, Anthony J. | Peng, Jingjing | Xu, Wen | Zhang, Fusuo
China has been seriously affected by particulate matter (PM) and gaseous pollutants in the atmosphere. In this study, we systematically analyse the spatio-temporal patterns of PM₂.₅, PM₁₀, SO₂, CO, NO₂, and O₃ and the associated health risks, using data collected from 1498 national air quality monitoring sites. An analysis of the averaged data from all the sites indicated that, from 2015 to 2018, annual mean concentrations of PM₂.₅, PM₁₀, SO₂ and CO declined by 3.2 μg m⁻³, 3.7 μg m⁻³, 3.9 μg m⁻³, and 0.1 mg m⁻³, respectively. In contrast, those of NO₂ and O₃ increased at rates of 0.4 and 3.1 μg m⁻³, respectively. Except for O₃, the annual mean concentrations of all pollutants were generally the highest in North China and lowest in the Tibetan Plateau. The concentrations were generally higher in the north of the country than in the south. In all regions of China, the pollutant concentrations were the highest in winter and lowest in summer, except for O₃, which showed an opposite seasonal pattern. Overall, the seasonal mean concentrations of all the pollutants (except for O₃) significantly decreased between the same seasons in 2018 and 2015, whereas the seasonal mean O₃ concentrations generally significantly increased, and/or remained at stable levels in all four seasons except for winter. Diurnal variations of all pollutants (except for O₃) exhibited a bimodal pattern with peaks between 8:00 and 11:00 a.m. and 9:00 and 12:00 p.m., whereas O₃ exhibited a unimodal pattern with maximum values between 5:00 and 7:00 p.m. No significant differences in the daily mean concentrations of all pollutants were found between weekdays and weekends in all regions, except for PM₂.₅ and PM₁₀ in Northeast China. In Northwest China and Southeast China, PM₂.₅ showed stronger correlations with NO₂ relative to SO₂, suggesting that NOₓ emission control may be more effective than SO₂ emission control for alleviating PM₂.₅ formation. Compared with 2015, the total PM₂.₅-attributable mortality, number of respiratory and cardiovascular diseases, and incidence of chronic bronchitis decreased overall by 23.4%–26.9% in 2018. In contrast, for O₃-attributable deaths, there was an increase of 18.9%. Our study not only improves the understanding of the spatial and temporal patterns of air pollutants in China, but also highlights that synchronous control of PM₂.₅ and O₃ pollution should be implemented to achieve dual benefits in protecting human health.
اظهر المزيد [+] اقل [-]Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields النص الكامل
2020
Yang, Wentao | Zhou, Hang | Gu, Jiaofeng | Liao, Bohan | Zhang, Jia | Wu, Pan
Rapeseed (Brassica napus L.) is a winter oil crop and biodiesel resource that has been widely cultivated in the southern part of China. Applying rapeseed residue (RSD) to summer rice fields is a common agricultural practice under rice−rapeseed double cropping systems. However, in Cd−contaminated paddy fields, the influence mechanisms of this agricultural practice on the migration and distribution of Cd fractions in soil are not clear. Therefore, a field experiment was carried out to analyse the changes in soil pH, organic matter (OM), microbial biomass carbon (MBC) and nitrogen (MBN), enzyme activity (urease (UA), acid phosphatase (ACP), and dehydrogenase (DH)), Cd distribution fractions, and Cd concentration in rice tissues after RSD application. The results showed that RSD treatment significantly increased the soil OM and MBC concentrations and UA, ACP, and DH activities, decreased the soil acetic acid−extractable fraction of Cd (ACI–Cd), and increased the reducible fraction of Cd (Red–Cd). The formation of stable organic complexes and chelates upon application of RSD is a result of the high affinity of Cd for soil OM. The activities of soil ACP, DH and MBC can well reflect Cd ecotoxicity in soil, particularly the DH activity. In addition, RSD application was helpful in inducing iron plaque formation. The “barrier” effect of iron plaque resulted in reduced Cd accumulation in different tissues of rice. The health risk of rice consumption also decreased as a result of RSD application; it decreased by 0.89–30.0% and 24.1–51.7% in the two tested fields. Overall, the application of RSD was increased soil OM, microbial biomass, and enzyme activity, and these changes was instrumental in reduce the risk of cadmium pollution in rice fields.
اظهر المزيد [+] اقل [-]Biomonitoring of perylene in symbiotic reef and non-reef building corals and species-specific responses in the Kharg and Larak coral reefs (Persian Gulf, Iran): Bioaccumulation and source identification النص الكامل
2020
Ranjbar Jafarabadi, Ali | Dashtbozorg, Mehdi | Raudonytė-Svirbutavičienė, Eva | Riyahi Bakhtiari, Alireza
In this study, coral soft tissue, skeleton and zooxanthellae, as well as their ambient sediment and seawater were analyzed for polycyclic aromatic hydrocarbons (PAHs) with a special focus on perylene. Samples were collected from two different environments: the Kharg Island, which is affected by numerous anthropogenic stressors and Larak Island, which is mainly used for recreational and fishing activities and is characterized by dense vegetation. The heaviest loadings of PAHs were observed on Kharg Island, yet higher concentrations of perylene were detected on Larak Island and it was identified as the prevailing compound in this area. Pyrogenic perylene sources were prevailing on Kharg Island, whereas the perylene on Larak Island was determined to be of natural origin. After analyzing the biological samples, higher perylene concentrations were observed in zooxanthellae than in tissue and skeleton. The lowest and the highest perylene loadings were found in the tissue and skeleton of Platygyra daedalea and Porites lutea, respectively. This applies to both reefs. We found that perylene distribution in the corals and their ambient environment follows an irregular pattern, demonstrating remarkable effects from the local inputs. The lipid content in the coral tissue and the location of the coral colony were deduced to be the main factors affecting perylene distribution in corals. On Larak Island, a significant correlation between perylene loadings in sediment and corals was observed. On Kharg Island, a strong interaction between the water column and the corals was detected. The symbiotic relationship between the corals and zooxanthellae might play the most significant role in bioconcentration and bioaccumulation of perylene. Due to the insolubility of PAHs, they could be transferred through a food chain to zooxanthellae and eventually deposited in the coral bodies.
اظهر المزيد [+] اقل [-]Occurrence, sources and health risks of toxic metal(loid)s in road dust from a mega city (Nanjing) in China النص الكامل
2020
Wang, Xiaoyu | Liu, Enfeng | Lin, Qi | Liu, Lin | Yuan, Hezhong | Li, Zijun
Potential toxic metal(loid)s (PTMs) in road dust are a major concern in relation to urban environmental quality. Identifying pollution hotspots and sources of PTMs is an essential prerequisite for pollution control and management. Herein, the concentrations, pollution and potential health risks of 8 PTMs (As, Cd, Co, Cu, Hg, Mo, Pb and Zn) in road dust from the highly urbanized areas of Nanjing were studied. Spatial occurrences and sources of PTMs were explored using geostatistics, principal component analysis (PCA) and local Moran’s index. The contamination factor (CF) results showed that Co was mainly natural in origin, while the other PTMs were polluted, with average CFs ranging from 1.4 to 11.0 as follows: Hg > Mo > Cd > Cu > Pb > Zn > As, indicating moderate to very high contamination. Except for Co and Hg, the other PTMs were heavily loaded on PC1, which explained 44.72% of the total variance. Combining the statistical results and distributions of potential sources, we deduced that industrial emissions dominated the spatial patterns of all polluted PTMs in road dust, which showed high levels in the northern parts of the study region and generally decreasing levels southwards. Moreover, Pb and Zn in the south-central area and Cd in the north-central area displayed hotspots, with maximum CFs of 5.5 (Pb), 4.2 (Zn) and 16.2 (Cd), which were related to additional automotive and railway braking emissions, respectively. The resuspension of legacy pesticides in soil is likely responsible for the As pollution hotspot in the southwestern part. Despite the high anthropogenic contributions (27% for As and 68–88% for the other metals) to the PTMs in road dust, their noncarcinogenic and carcinogenic health risks were rarely found for children and adults based on the values of the hazard index and carcinogenic risk index. However, attention still should be paid to the pollution hotspots in the northern region.
اظهر المزيد [+] اقل [-]Fabrication and evaluation of silica embedded and zerovalent iron composited biochars for arsenate removal from water النص الكامل
2020
Ahmad, Munir | Usman, Adel R.A. | Hussain, Qaiser | Al-Farraj, Abdullah S.F. | Tsang, Yiu Fai | Bundschuh, Jochen | Al-Wabel, Mohammad I.
Waste date palm-derived biochar (DPBC) was modified with nano-zerovalent iron (BC-ZVI) and silica (BC-SiO₂) through mechanochemical treatments and evaluated for arsenate (As(V)) removal from water. The feedstock and synthesized adsorbents were characterized through proximate, ultimate, and chemical analyses for structural, surface, and mineralogical compositions. BC-ZVI demonstrated the highest surface area and contents of C, N, and H. A pH range of 2–6 was optimum for BC-ZVI (100% removal), 3–6 for DPBC (89% removal), and 4–6 for BC-SiO₂ (18% removal). Co-occurring PO₄³⁻ and SO₄²⁻ ions showed up to 100% reduction, while NO₃⁻ and Cl⁻ ions resulted in up to 26% reduction in As(V) removal. Fitness of the Langmuir, Freundlich and Redlich-Peterson isotherms to As(V) adsorption data suggested that both mono- and multi-layer adsorption processes occurred. BC-ZVI showed superior performance by demonstrating the highest Langmuir maximum adsorption capacity (26.52 mg g⁻¹), followed by DPBC, BC-SiO₂, and commercial activated carbon (AC) (7.33, 5.22, and 3.28 mg g⁻¹, respectively). Blockage of pores with silica particles in BC-SiO₂ resulted in lower As(V) removal than that of DPBC. Pseudo-second-order kinetic model fitted well with the As(V) adsorption data (R² = 0.99), while the Elovich, intraparticle diffusion, and power function models showed a moderate fitness (R² = 0.53–0.93). The dynamics of As(V) adsorption onto the tested adsorbents exhibited the highest adsorption rates for BC-ZVI. As(V) adsorption onto the tested adsorbents was confirmed through post-adsorption FTIR, SEM-EDS, and XRD analyses. Adsorption of As(V) onto DPBC, BC-SiO₂, and AC followed electrostatic interactions, surface complexation, and intraparticle diffusion, whereas, these mechanisms were further abetted by the higher surface area, nano-sized structure, and redox reactions of BC-ZVI.
اظهر المزيد [+] اقل [-]Perfluorooctane sulfonate disrupts the blood brain barrier through the crosstalk between endothelial cells and astrocytes in mice النص الكامل
2020
Yu, Yongquan | Wang, Chao | Zhang, Xuhui | Zhu, Jiansheng | Wang, Li | Ji, Minghui | Zhang, Zhan | Ji, Xiao-Ming | Wang, Shou-Lin
Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to accumulate in brain and induce neurotoxicity. However, little is known the route and mechanism of its entrance in brain. In the present study, ICR mice were treated with PFOS for 28 days, the cerebral PFOS were measured and the morphological and ultrastructural changes of blood–brain barrier (BBB) were observed. Also, the expression and localization of the proteins related to the cerebral damages, tight junctions (TJs) and p38 activation were detected. Additionally, U87 cells were used to explore the role of p38 in PFOS-induced damages of astrocytes. PFOS significantly decreased the expression of TJ-related proteins (ZO-1, Claudin-5, Claudin-11, Occludin) in endothelial cells and disrupted BBB, which subsequently led PFOS to astrocytes and increased the expression of the proteins related to astrocytic damages (Aquaporin 4 and S100β). These results aggravated BBB disruption and further increased the cerebral PFOS levels. Besides, phosphorylated p38 activation was involved into PFOS-induced astrocytic damages in vivo and in vitro. In conclusion, the crosstalk between endothelial cells and astrocytes facilitated the BBB disruption and increased the accumulation of PFOS in brain. Our findings provided a new insight into the toxicological and physiological profiles of PFOS-induced neurotoxicity.
اظهر المزيد [+] اقل [-]