خيارات البحث
النتائج 1621 - 1630 من 6,548
Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil النص الكامل
2020
Su, Binglin | Lin, Jiajiang | Owens, Gary | Chen, Zuliang
Iron nanoparticles (Fe NPs) have often been used for in situ remediation of both groundwater and soil. However, the impact of Fe NPs on the distribution and transformation of As species in contaminated soil is still largely unknown. In this study, green iron oxide nanoparticles synthesized using a euphorbia cochinchinensis leaf extract (GION) were used to stabilize As in a contaminated soil. GION exhibited excellent As stabilization effects, where As in non-specifically-bound and specifically-bound fractions decreased by 27.1% and 67.3% after 120 days incubation. While both arsenate (As (V)) and arsenite (As (III)) decreased after GION application, As (V) remained the dominant species in soil. X-ray photoelectron spectroscopy (XPS) confirmed that As (V) was the dominant species in specifically-bound fractions, while As (III) was the dominant species in amorphous and poorly-crystalline hydrous oxides of Fe and Al. Correlation analysis showed that while highly available As fractions were negatively correlated to oxalate and DCB extractable Fe, they were positively correlated to Fe²⁺ content, which indicated that Fe cycling was the main process influencing changes in As availability. X-ray fluorescence (XRF) spectroscopy also showed that the Fe₂O₃ content increased by 47.9% following GION soil treatments. Overall, this work indicated that As would be transformed to more stable fractions during the cycling of Fe following GION application and that the application of GION, even in small doses, provides a low-cost and ecofriendly method for the stabilization of As in soil.
اظهر المزيد [+] اقل [-]Size-dependent effects of ZnO nanoparticles on performance, microbial enzymatic activity and extracellular polymeric substances in sequencing batch reactor النص الكامل
2020
Wang, Sen | Gao, Mengchun | Ma, Bingrui | Xi, Min | Kong, Fanlong
ZnO nanoparticles (NPs) have been detected in various wastewater treatment plants. It is widely assumed that size has a crucial effect on the NPs toxicity. Concerns have been raised over probable size-dependent toxicity of ZnO NPs to activated sludge, which could eventually affect the treatment efficiencies of wastewater treatment facilities. The size-dependent influences of ZnO NPs on performance, microbial activities, and extracellular polymeric substances (EPS) from activated sludge were examined in sequencing batch reactor (SBR) in present study. Three different sizes (15, 50, and 90 nm) and five concentrations (2, 5, 10, 30, and 60 mg L⁻¹) were trialled. The inhibitions on COD and nitrogen removal were determined by the particle size, and smaller ZnO NPs (15 nm) showed higher inhibition effect than those of 50 and 90 nm, whereas the ZnO NPs with size of 50 nm showed maximum inhibition effect on phosphorus removal among three sizes of ZnO NPs. After exposure to different sized ZnO NPs, microbial enzymatic activities and removal rates of activated sludge represented the same trend, consistent with the nitrogen and phosphorus removal efficiency. In addition, apparent size- and concentration-dependent effects on EPS contents and components were also observed. Compared with the absence of ZnO NPs, 60 mg L⁻¹ ZnO NPs with sizes of 15, 50, and 90 nm increased the EPS contents from 92.5, 92.4, and 92.0 mg g⁻¹ VSS to 277.5, 196.8, and 178.2 mg g⁻¹ VSS (p < 0.05), respectively. The protein and polysaccharide contents increased with the decreasing particle sizes and increasing ZnO NPs concentrations, and the content of protein was always higher than that of polysaccharide.
اظهر المزيد [+] اقل [-]Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil النص الكامل
2020
Vázquez-Blanco, Raquel | Arias-Estévez, Manuel | Bååth, Erland | Fernández-Calviño, David
Microbial responses to Cu pollution as a function of Cu sources (Cu salts and commercial Cu fungicides) were assessed in a soil using basal soil respiration, and bacterial and fungal community growth, as endpoints. The soil was amended with different concentrations (0–32 mmol Cu kg⁻¹) of Cu nitrate, Cu sulfate, Bordeaux mixture and 3 types of Cu oxychloride. Cu salts decreased soil pH, while this was not found with the other Cu sources. This difference in soil pH effects caused differences in the respiration, bacterial growth and fungal growth response. Basal soil respiration was negatively affected by Cu addition when the soil was spiked with Cu salts, but almost unaffected by commercial Cu fungicides. Bacterial growth was significantly and negatively affected by Cu addition for all the Cu sources, but Cu toxicity was higher for Cu salts than for commercial Cu fungicides. Fungal growth response was also different for Cu salts and commercial Cu fungicides, but only in the long-term. High Cu amendments using Cu salts stimulated fungal growth, whereas for commercial Cu fungicides, these concentrations inhibited fungal growth. Thus, the use of products similar to those used in commercial fungicides is a recommended practice for Cu risk assessments in soil.
اظهر المزيد [+] اقل [-]Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt) النص الكامل
2020
Shaheen, Sabry M. | Antoniadis, Vasileios | Kwon, Eilhann | Song, Hocheol | Wang, Shan-Li | Hseu, Zeng-Yei | Rinklebe, Jörg
The aim of this study was to assess the soil contamination caused by potentially toxic elements (Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, V, and Zn) using various indices and the associated risk of human health for adults and children in selected soils from Germany (Calcic Luvisols, Tidalic Fluvisols, Haplic Gleysols, and Eutric Fluvisols) and Egypt (Haplic Calcisols, Sodic Fluvisols, and Eutric Fluvisols). Soil contamination degree has been assessed using indices such as contamination factor (CF), pollution load index (PLI), geo-accumulation index (Igₑₒ), and enrichment factor. We also assessed the health risk for children and for male and female adults. Chromium, Cu, As, Mo, Ni, Se, and Zn in the German Fluvisols had high CF of >6, while in the Egyptian Fluvisols Se, Mo, As, and Al revealed a high CF. The PLI (1.1–5.2) was higher than unity in most soils (except for Tidalic Fluvisols), while the most important contributor was Se, followed by Mo and As in the Egyptian Fluvisols, and by Cr, Cu, and Zn in the German Fluvisols. The median value of hazard index (HI) for children in the studied soils indicated an elevated health risk (higher than one), especially in the German Fluvisols (HI = 4.0–29.0) and in the Egyptian Fluvisols (HI = 2.2–5.2). For adults, median HIs in all soils were lower than unity for both males and females. The key contributor to HI was As in the whole soil profiles, accounting for about 59% of the total HIs in all three person groupings. Our findings show that in the studied multi-element contaminated soils the risk for children’s health is higher than for adults; while mainly As (and Al, Cr, Cu, and Fe) contributed significantly to soil-derived health risk.
اظهر المزيد [+] اقل [-]Metabolomic insights into the lasting impacts of early-life exposure to BDE-47 in mice النص الكامل
2020
Li, Yuqian | Yu, Nanyang | Li, Meiying | Li, Kan | Shi, Wei | Yu, Hongxia | Wei, Si
Early-life exposure to toxicants may have lasting effects that adversely impact later development. Thus, although the production and use of a toxicant have been banned, the risk to previously exposed individuals may continue. BDE-47, a component of commercial penta-BDEs, is a persistent organic pollutant with demonstrated neurotoxicity. To investigate the persistent effects of BDE-47 and the mechanisms thereof, we employed a metabolomics approach to analyze the brain, blood and urine of mice exposed to BDE-47 for 28 days and then 3 months post-exposure. In the brain, BDE-47 was detectable just after exposure but was below the limit of detection (LOD) 3 months later. However, the metabolomic alterations caused by early-life exposure to BDE-47 persisted. Potential biomarkers related to these alterations included phosphatidylcholine, lysophosphatidylcholine, sphingomyelin and several amino acids and biogenic amines. The metabolic pathways involved in the response to BDE-47 in the brain were mainly those related to glycerophospholipid metabolism, sphingomyelin metabolism and neurotransmitter regulation. Thus, our study demonstrates the utility of metabolomics, as the omics most closely reflecting the phenotype, in exploring the mechanisms underlying the lasting effects induced by early-life BDE-47 exposure.
اظهر المزيد [+] اقل [-]Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions النص الكامل
2020
Li, Zongrui | He, Chang | Thái Phong, | Wang, Xianyu | Bräunig, Jennifer | Yu, Yunjiang | Luo, Xiaojun | Mai, Bixian | Mueller, Jochen F.
A substantial increase in the usage of organophosphate esters (OPEs) as flame retardants and plasticizers in rubbers, textiles, upholstered furniture, lacquers, plastics, building materials and electronic equipment has resulted in their increasing concentrations in the environment over time. However, little is known about the concentrations and fate of OPEs and their metabolites (mOPEs) in biota, including chicken eggs. The aim of this study was to understand the spatial variation in the concentrations in chicken eggs and the partitioning between yolk and albumin. In total, 153 chicken eggs were purchased across Australia and analysed for 9 OPEs and 11 mOPE. Most of the compounds were found to be deposited in egg yolk, where diphenyl phosphate (DPHP, 3.8 ng/g wet weight, median) and tris(2-chloroisopropyl) phosphate (TCIPP, 1.8 ng/g wet weight, median) were predominant mOPE and OPE, respectively. Moreover, no spatial differences in concentrations of OPEs and mOPEs in eggs purchased from different locations were found in this study. Although comparable levels of ∑OPEs were detected in egg yolk and albumin, much higher concentrations of ∑mOPEs were found in yolk than albumin. Meanwhile, a negative correlation (R² = 0.964, p = 0.018) was found between the molecular mass of analytes and partitioning coefficient of Cyₒₗₖ/Cyₒₗₖ₊ₐₗbᵤₘᵢₙ (defined as chemical concentration in egg yolk divided by the sum of chemical concentrations in both yolk and albumin). These results indicate that n-octanol/water partition coefficients (log KOW) may not be a crucial factor in the distribution of OPEs and mOPEs between egg yolk and albumin, which is important in understanding distribution of emerging organic contaminants in biota.
اظهر المزيد [+] اقل [-]Human activities and the natural environment have induced changes in the PM2.5 concentrations in Yunnan Province, China, over the past 19 years النص الكامل
2020
Yang, Kun | Teng, Mengfan | Luo, Yi | Zhou, Xiaolu | Zhang, Miao | Sun, Weizhao | Li, Qiulin
Fine particulate matter (PM₂.₅) concentrations exhibit distinct spatiotemporal heterogeneity, mainly due to the natural environment and human activities. Yunnan Province of China was selected as the research area, and a real-time measured PM₂.₅ concentration dataset was acquired from 41 monitoring stations in 16 major cities from February 2013 to December 2018. Aerosol optical depth (AOD) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and data on four meteorological variables from 2000 to 2018 were employed. A novel hybrid model was constructed to estimate the historical missing PM₂.₅ values from 2000 to 2012, calculate the missing PM₂.₅ concentrations from 2012 to 2014 in some major cities, and analyze the driving factors of the PM₂.₅ concentration changes and causes of key pollution events in Yunnan Province over the past 19 years. The temporal analysis results indicate that the annual mean PM₂.₅ concentration in Yunnan Province exhibited three stages: continuous stability, a rapid increase and a rapid decrease. The year 2013 was an important breakpoint in the trend of the concentration change. The spatial analysis results reveal that the annual mean PM₂.₅ concentration in the north was lower than that in the south, and there was a significant difference between the east and the west. In addition, springtime biomass burning in Southeast Asia was found to be the main cause of PM₂.₅ pollution in Yunnan Province in spring.
اظهر المزيد [+] اقل [-]Dermal bioaccessibility and absorption of polycyclic aromatic hydrocarbons (PAHs) in indoor dust and its implication in risk assessment النص الكامل
2020
Luo, Kesong | Zeng, Diya | Kang, Yuan | Lin, Xunyang | Sun, Na | Li, Cheng | Zhu, Mengqi | Chen, Zhenwen | Man, Yu Bon | Li, Hui
Numerous studies have focused on assessing the risk of human exposure to polycyclic aromatic hydrocarbons (PAHs) in indoor dust via dermal contact. However, the dermal bioaccessibility and dermal absorption of PAHs in indoor dust have seldom been reported. In the present study, the effects of temperature, sweat ratio, solid-liquid ratio and incubation time on the dermal bioaccessibility of PAHs were examined. Naphthalene, phenanthrene, pyrene and benzo[a]pyrenewere selected for examination in an absorption assay with keratinocyte cells. The results showed the release of PAHs from indoor dust fitted a first-order one-compartment model. Naphthalene had the highest rate of release, which was consistent with the bioaccessibility assay results. In addition, the absorption rate of naphthalene and phenanthrene by keratinocytes was higher than that of pyrene and benzo[a]pyrene, with the latter being of higher molecular weight. These results indicated that low molecular weight PAHs were much more easily absorbed via dermal contact than were high molecular weight PAHs. The dermal bioavailability of PAHs in indoor dust was estimated by multiplying the bioaccessibility of PAHs in indoor dust by the ratio of dermal absorption by skin cells, and ranged from 0.12 to 51.0%. These data will be useful in risk assessments.
اظهر المزيد [+] اقل [-]Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant النص الكامل
2020
Singh, Vikash | Srivastava, Vimal Chandra
In the present work, low-cost and efficient iron oxide nanoparticle incorporated on mesoporous biochar was prepared from effluent treatment plant (ETP) sludge collected from the textile industry. This sludge contains a higher amount of Fe due to the use of ferric chloride as a coagulant in the treatment of wastewater generated during the process. The raw sludge and prepared biochar was extensively examined by various sophisticated techniques like XRF, XRD, BET, TGA, XPS, RAMAN, FTIR, FESEM, TEM, and VSM. TEM and XRD analysis confirms the presence of iron oxide nanoparticles on mesoporous biochar. The prepared biochar was found to possess BET surface area of 91 m² g⁻¹. Several parameters like pH, dose, initial concentration, temperature and time were optimized for the adsorptive removal of ofloxacin (OFL) from aqueous solution. Biochar (named as BTSFe) achieved ≈96% removal efficiency of OFL with a maximum adsorption capacity (qₘ) of 19.74 mg g⁻¹ at optimum condition. π-π electron–donor-acceptor and H bonding were the major mechanisms responsible for the OFL adsorption. Kinetic and equilibrium thermodynamic study of showed that the adsorption of OFL was represented by the pseudo-second-order kinetics model, and the process was exothermic and spontaneous. Additionally, Redlich-Peterson and Freundlich isotherms best fitted the experimental data indicating multilayer adsorption phenomenon. Biochar was magnetically separated and thermally regenerated after each cycle for five times with a nominal overall decrease of ≈8% in removal efficiency. Leaching of iron during the adsorption process was also checked and found to be within the permissible limit. This study provides an alternative application of the textile industry sludge as an efficient, low-cost biochar for the removal of emerging pharmaceutical compounds.
اظهر المزيد [+] اقل [-]Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources النص الكامل
2020
Yu, Ya-qi | Cui, Si-fan | Fan, Rui-jun | Fu, Yuan-zhou | Liao, Yu-liang | Yang, Jin-yan
The industrial and agricultural activities based on phosphorous can increase the F content in the surrounding area, causing a widespread adverse effect on the organisms. However, the current information on the superposed health risk posed by the multi-exposure to the F contamination in an area jointly affected by agricultural and industrial activities (DA) is limited. Herein, the F distribution in multi-environmental media and the exposure risk to humans by ingestion, inhalation, and dermal contact pathways are studied in an DA. The content of soil water-soluble fluorine (WF) was higher in the DA than in the area individually affected by agricultural activities (SA). This indicated a superposed contribution of the industrial and agricultural activities to increase the F toxicity in the soil. The correlation of the soil pH and the organic matter content with the soil WF concentration in DA suggested an inter-relationship between the soil physicochemical properties and the toxicity of F in the soil by industrial and agricultural activities. Irrigation water was not a major anthropogenic source of the cropland soil F. The large variation in F concentration in the crops (101.8–195.6%) might have originated from the discrepancies in the soil F content and air F concentration. The air F pollution (0.6–1.6 μg dm⁻² d⁻¹) in the area particularly influenced by intensive industrial activities should be important. The exposure of residents to F was mainly from the ingestion of F-enriched crops. The higher exposure of adults to F than that of children could be attributed to more industrial and agricultural outdoor activities, larger exposure area of the skin, and more daily ingestion of F-enriched food by adults. Overall, present insights into the distribution of and the multi-exposure to F may be beneficial for decreasing the adverse F effects on the residents in DAs worldwide.
اظهر المزيد [+] اقل [-]