خيارات البحث
النتائج 1631 - 1640 من 2,513
The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries النص الكامل
2014
Rafindadi, Abdulkadir Abdulrashid | Yusof, Zarinah | Zaman, Khalid | Kyophilavong, Phouphet | Akhmat, Ghulam
The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975–2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.
اظهر المزيد [+] اقل [-]Assessment of the contribution of sewer deposits to suspended solids loads in combined sewer systems during rain events النص الكامل
2014
Hannouche, A. | Chebbo, G. | Joannis, C.
Within the French observatories network SOERE “URBIS,” databases of continuous turbidity measurements accumulating hundreds of events and many dry weather days are available for two sites with different features (Clichy in Paris and Ecully in Lyon). These measurements, converted into total suspended solids (TSS) concentration using TSS–turbidity relationships and combined with a model of runoff event mean concentration, enable the assessment of the contribution of sewer deposits to wet weather TSS loads observed at the outlet of the two watersheds. Results show that the contribution of sewer deposits to wet weather suspended solid’s discharges is important but variable (between 20 and 80 % of the mass at the outlet depending on the event), including a site allegedly free of (coarse) sewer deposits. The uncertainties associated to these results are assessed too.
اظهر المزيد [+] اقل [-]Importance of fish gender as a factor in environmental monitoring of mercury النص الكامل
2014
Jankovská, Ivana | Miholová, Daniela | Romočuský, Štěpán | Petrtýl, Miloslav | Langrová, Iva | Kalous, Lukáš | Sloup, Vladislav | Válek, Petr | Vadlejch, Jaroslav | Lukešová, Daniela
Total mercury concentrations were determined in the gonadal tissues of 15 female and 10 male European perch (Perca fluviatilis) from one location of the stream “Jevanský potok” located about 30 km from Prague (Czech Republic). Tissue samples were frozen at −26 °C in polypropylene containers until further processing, which was carried out using an Advance Mercury Analyser (single purpose atomic absorption spectrometer). Mercury concentrations were present in all analysed gonad samples, and ranged from 2.3 to 12.7 μg/kg wet weight. However, we determined a mean Hg concentration (9.45 μg/kg) in male gonads that was 2.4 times greater than that of female gonads (3.9 μg/kg). This is an important finding when taking into account fish sex in environmental pollution monitoring (especially for mercury contamination).
اظهر المزيد [+] اقل [-]In vitro cytogenetic assessment of trichloroacetic acid in human peripheral blood lymphocytes النص الكامل
2014
Varshney, Meenu | Chandra, Abhijit | Chauhan, L. K. S. | Goel, S. K.
Trichloroacetic acid (TCA), a common water disinfection byproduct and a persistent metabolite of trichloroethylene (TCE), has been examined for its genotoxic potential in human lymphocytes. Chromosomal aberration (CA) and cytokinesis-block micronucleus (CBMN) assay were employed to assess the toxicity of TCA. Lymphocytes obtained from three healthy donors were exposed to 25, 50, and 100 μg/ml concentration of TCA separately. TCA exposure resulted in chromosomal anomalies and the formation of micronuclei in lymphocytes. Chromosome analysis revealed the dose-dependent and significant induction of CA. Chromatid break/chromosome break, fragments, and chromatid exchanges were commonly observed. Exposure of higher concentration (50 and 100 μg/ml) significantly inhibited mitotic index. Data obtained with CBMN assay indicated that the induction of micronucleus (MN) formation was greater than that of CA. At 25 μg/ml, TCA induced significant frequencies of MN as compared to control cells. Significant induction of MN at the lowest concentration indicates TCA may also interact with mitotic spindles. Lower percentage of CA and MN at 100 μg/ml as compared to 50 μg/ml indicates occurrence of severe cytotoxicity on exposure of 100 μg/ml TCA in lymphocytes. Collectively, results of both cytogenetic assays indicate that exposure of TCA can induce significant genotoxic and cytotoxic effects.
اظهر المزيد [+] اقل [-]Compaction stimulates denitrification in an urban park soil using 15N tracing technique النص الكامل
2014
Li, Shun | Deng, Huan | Rensing, Christopher | Zhu, Yong-Guan
Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using¹⁵N labeling method and acetylene inhibition technique, we performed three coherent incubation experiments to quantify denitrification in compacted soil under both aerobic and anaerobic conditions. Uncompacted soil was set as the control treatment. When monitoring soil incubation without extra substrate, higher nitrous oxide (N₂O) flux and denitrification enzyme activity were observed in the compacted soil than in the uncompacted soil. In aerobic incubation with the addition of K¹⁵NO₃, N₂O production in the compacted soil reached 10.11 ng N h⁻¹ g⁻¹as compared to 0.02 ng N h⁻¹ g⁻¹in the uncompacted soil. Denitrification contributed 96 % of the emitted N₂O in the compacted soil and 36 % of the emitted N₂O in the uncompacted soil; total denitrification rate was higher in the compacted soil (up to 79.35 ng N h⁻¹ g⁻¹) than in the uncompacted soil (0.11 ng N h⁻¹ g⁻¹). Under anaerobic incubation with the addition of K¹⁵NO₃, no statistical difference in total N losses and¹⁵N-(N₂O+N₂) flux between the uncompacted soil and the compacted soil was detected. Compaction promoted soil denitrification and may impact urban N biogeochemical cycling.
اظهر المزيد [+] اقل [-]H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components النص الكامل
2014
Drosos, Marios | Leenheer, J. A. | Avgeropoulos, Apostolos | Deligiannakis, Yiannis
A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LPₐᵣₑₙₜₐₗHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SPₐᵣₑₙₜₐₗHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.
اظهر المزيد [+] اقل [-]Environmental effects of soil contamination by shale fuel oils النص الكامل
2014
Kanarbik, Liina | Blinova, Irina | Sihtmäe, Mariliis | Künnis-Beres, Kai | Kahru, Anne
Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)—‘VKG D’ and ‘VKG sweet’—in different soil matrices under natural climatic conditions. Dynamics of SFOs’ hydrocarbons (C10–C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons’ content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.
اظهر المزيد [+] اقل [-]A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues النص الكامل
2014
Pati, Anupama | Chaudhary, Rubina | Subramani, Saravanabhavan
Raw hide/skins come to the tanners as a by-product of meat industry which is converted into value-added leather as product for fashion market. Leather manufacturing is a chemical process of natural biological matrix. It employs a huge quantity of water and inorganic and organic chemicals for processing and thereby discharges solid and liquid wastes into the environment. One of the potential solid wastes generated from leather industry is chrome-tanned leather shavings (CTLSs), and its disposal is increasingly becoming a huge challenge on disposal to tanners due to presence of heavy metal chromium. Hence, finding a sustainable solution to the CTLS disposal problem is a prime challenge for global tanners and researchers. This paper aims to the deeper review of various disposal methods on CTLS such as protein, chromium, and energy recovery processes and its utilization methodologies. Sustainable technologies have been developed to overcome CTLS solid wastes emanating from leather processing operations. Further, this review paper brings a broader classification of developed methodologies for treatment of CTLSs.
اظهر المزيد [+] اقل [-]Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater النص الكامل
2014
Zhou, Ya-Zhen | Yang, Jie | Wang, Xiao-Li | Pan, Yue-Qing | Li, Hui | Zhou, Dong | Liu, Yong-Di | Wang, Ping | Gu, J.-D. | Lu, Qiang | Qiu, Yue-Feng | Lin, Kuang-Fei
Chlorinated hydrocarbons are the most common organic pollutants in groundwater systems worldwide. In this study, we developed bio-beads with immobilized anaerobic bacteria, zero-valent iron (ZVI), and activated carbon (AC) powder and evaluated their efficacy in removing 1,1,1-trichloroethane (TCA) from groundwater. Bio-beads were produced by polyvinyl alcohol, alginate, and AC powder. We found that the concentration of AC powder used significantly affected the mechanical properties of immobilized bio-beads and that 1.0 % (w/v) was the optimal concentration. The bio-beads effectively degraded TCA (160 mg L⁻¹) in the anaerobic medium and could be reused up to six times. The TCA degradation rate of bio-beads was 1.5 and 2.3 times greater, respectively, than ZVI + AC treatment or microbes + AC treatment. Measuring FeS produced by microbial reactions indicated that TCA removal occurred via FeS-catalyzed dechlorination. Analysis of clonal libraries derived from bio-beads demonstrated that the dominant species in the community were Betaproteobacteria and Gammaproteobacteria, which may contribute to the long-term stability of ZVI reactivity during TCA dechlorination. This study shows that the combined use of immobilized anaerobic bacteria, ZVI, and AC in bio-beads is effective and practical for TCA dechlorination and suggests they may be applicable towards developing a groundwater treatment system for the removal of TCA.
اظهر المزيد [+] اقل [-]Heterogeneous Fenton degradation of bisphenol A catalyzed by efficient adsorptive Fe3O 4/GO nanocomposites النص الكامل
2014
Hua, Zulin | Ma, Wenqiang | Bai, Xue | Feng, Ranran | Yu, Lu | Zhang, Xiaoyuan | Dai, Zhangyan
A new method for the degradation of bisphenol A (BPA) in aqueous solution was developed. The oxidative degradation characteristics of BPA in a heterogeneous Fenton reaction catalyzed by Fe₃O₄/graphite oxide (GO) were studied. Transmission electron microscopic images showed that the Fe₃O₄nanoparticles were evenly distributed and were ∼6 nm in diameter. Experimental results suggested that BPA conversion was affected by several factors, such as the loading amount of Fe₃O₄/GO, pH, and initial H₂O₂concentration. In the system with 1.0 g L⁻¹of Fe₃O₄/GO and 20 mmol L⁻¹of H₂O₂, almost 90 % of BPA (20 mg L⁻¹) was degraded within 6 h at pH 6.0. Based on the degradation products identified by GC–MS, the degradation pathways of BPA were proposed. In addition, the reused catalyst Fe₃O₄/GO still retained its catalytic activity after three cycles, indicating that Fe₃O₄/GO had good stability and reusability. These results demonstrated that the heterogeneous Fenton reaction catalyzed by Fe₃O₄/GO is a promising advanced oxidation technology for the treatment of wastewater containing BPA.
اظهر المزيد [+] اقل [-]