خيارات البحث
النتائج 1661 - 1670 من 7,280
Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana
2022
He, Jianzhou | Zhang, Li | He, Sheng Yang | Ryser, Elliot T. | Li, Hui | Zhang, Wei
Application of nanopesticides may substantially increase surface attachment and internalization of engineered nanoparticles (ENPs) in food crops. This study investigated the role of stomata in the internalization of silver nanoparticles (Ag NPs) using abscisic acid (ABA)-responsive ecotypes (Ler and Col-7) and ABA-insensitive mutants (ost1-2 and scord7) of Arabidopsis thaliana in batch sorption experiments, in combination with microscopic visualization. Compared with those of the ABA-free control, stomatal apertures were significantly smaller for the Ler and Col-7 ecotypes (p ˂ 0.05) but remained unchanged for the ost1-2 and scord7 mutants, after exposure to 10 μM ABA for 1 h. Generally Ag NP sorption to the leaves of the Ler and Col-7 ecotypes treated with 10 μM ABA was lower than that in the ABA-free control, mainly due to ABA-induced stomatal closure. The difference in Ag NP sorption with and without ABA was less pronounced for Col-7 than for Ler, suggesting different sorption behaviors between these two ecotypes. In contrast, there was no significant difference in foliar sorption of Ag NPs by the ost1-2 and scord7 mutants with and without ABA treatment. Ag NPs were widely attached to the Arabidopsis leaf surface, and found at cell membrane, cytoplasm, and plasmodesmata, as revealed by scanning electron microscopy and transmission electron microscopy, respectively. These results highlight the important role of stomata in the internationalization of ENPs in plants and may have broad implications in foliar application of nanopesticides and minimizing contamination of food crops by ENPs.
اظهر المزيد [+] اقل [-]Air conditioner filters become sinks and sources of indoor microplastics fibers
2022
Chen, Yingxin | Li, Xinyu | Zhang, Xiaoting | Zhang, Yalin | Gao, Wei | Wang, Ruibin | He, Defu
Indoor airborne microplastics fibers (MPFs) are emerging contaminants of growing concern. Nowadays, air conditioners (ACs) are widely used in indoor environments. However, little is known about their impact on the distribution of indoor MPFs. In this study, we first disclosed the prevalence of MPF contamination in filters for indoor split ACs used in living rooms, dormitories, and offices. The average density of microfibers was 1.47–21.4 × 10² items/cm², and a total 27.7–35.0% of fibers were MPFs. Of these fibers, the majority were polyester (45.3%), rayon (27.8%), and cellophane (20.1%). We further tracked the long-term accumulation of MPFs on AC filters in three types of rooms, and demonstrated that dormitories showed relatively heavy accumulation especially after running for 35–42 days. Furthermore, we found that simulative AC filters which had been lined with PET MPFs could effectively release those MPFs into indoor air, propelling them away from the ACs at varying distances. Statistical analysis showed that the estimated daily intake of MPFs (5–5000 μm length) from AC filters would increase gradually with their usage, with the intake volume reaching up to 11.2 ± 2.2–44.0 ± 8.9 items/kg-BW/day by the 70th day, although this number varied among people of different ages. Altogether, these findings suggest that AC filters can act as both a sink and a source of microplastics fibers. Therefore, AC filters should be evaluated not only for their substantial impact on the distribution of indoor airborne MPFs, but also for their role in the prevalence of the related health risks.
اظهر المزيد [+] اقل [-]How can environmental conditions influence dicofol genotoxicity on the edible Asiatic clam, Meretrix meretrix?
2022
Ivorra, Lucia | Cruzeiro, Catarina | Ramos, Alice | Tagulao, Karen | Cardoso, Patricia G.
Genotoxic effects of dicofol on the edible clam Meretrix meretrix were investigated through a mesocosm experiment. Individuals of M. meretrix, were exposed to environmental concentration (D1 = 50 ng/L) and supra-environmental concentration (D2 = 500 ng/L) of dicofol for 15 days, followed by the same depuration period. DNA damage (i.e., strand breaks and alkali-labile sites) was evaluated at day 1, 7 and 15, during uptake and depuration, using Comet assay (alkaline version) and nuclear abnormalities (NAs) as genotoxicity biomarkers. The protective effects of dicofol against DNA damage induced by ex vivo hydrogen peroxide (H₂O₂) exposure were also assessed. Comet assay results revealed no significant DNA damages under dicofol exposure, indicating 1) apparent lack of genotoxicity of dicofol to the tested conditions and/or 2) resistance of the animals due to optimal adaptation to stress conditions. Moreover, ex vivo H₂O₂ exposure showed an increase in the DNA damage in all the treatments without significant differences between them. However, considering only the DNA damage induced by H₂O₂ during uptake phase, D1 animals had significantly lower DNA damage than those from other treatments, revealing higher protection against a second stressor. NAs data showed a decrease in the % of cells with polymorphic, kidney shape, notched or lobbed nucleus, along the experiment. The combination of these results supports the idea that the clams used in the experiment were probably collected from a stressful environment (in this case Pearl River Delta region) which could have triggered some degree of adaptation to those environmental conditions, explaining the lack of DNA damages and highlighting the importance of organisms’ origin and the conditions that they were exposed during their lives.
اظهر المزيد [+] اقل [-]The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study
2022
Le, Ve Van | Ko, So-Ra | Kang, Mingyeong | Park, Chan-Yeong | Lee, Sang-Ah | Oh, Hee-Mock | Ahn, Chi-Yong
Microcystis blooms pose a major threat to the quality of drinking water. Cyanobactericidal bacteria have attracted much attention in the research community as a vehicle for controlling Microcystis blooms because of their ecological safety. Nonetheless, most studies on cyanobactericidal bacteria have been conducted on a laboratory scale but have not been scaled-up as field experiments. Thus, our understanding of the microbial response to cyanobactericidal bacteria in natural ecosystems remains elusive. Herein, we applied Paucibacter aquatile DH15 to control Microcystis blooms in a 1000 L mesocosm experiment and demonstrated its potential with the following results: (1) DH15 reduced Microcystis cell density by 90.7% within two days; (2) microcystins released by Microcystis death decreased to the control level in four days; (3) during the cyanobactericidal processes, the physicochemical parameters of water quality remained safe for other aquatic organisms; and (4) the cyanobactericidal processes promoted the growth of eukaryotic microalgae, replacing cyanobacteria. The cyanobactericidal processes accelerated turnover rates, decreased stability, and altered the functional profile of the microbial community. Network analysis demonstrated that this process resulted in more complex interactions between microbes. Overall, our findings suggest that strain DH15 could be considered a promising candidate for controlling Microcystis blooms in an eco-friendly manner.
اظهر المزيد [+] اقل [-]Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
اظهر المزيد [+] اقل [-]A sustainable Decision Support System for soil bioremediation of toluene incorporating UN sustainable development goals
2022
Akbarian, Hadi | Jalali, Farhad Mahmoudi | Gheibi, Mohammad | Hajiaghaei-Keshteli, Mostafa | Akrami, Mehran | Sarmah, Ajit K.
Decision Support System (DSS) is a novel approach for smart, sustainable controlling of environmental phenomena and purification processes. Toluene is one of the most widely used petroleum products, which adversely impacts on human health. In this study, Fusarium Solani fungi are utilized as the engine of the toluene bioremediation procedure for the monitoring part of DSS. Experiments are optimized by Central Composite Design (CCD) - Response Surface Methodology (RSM), and the behavior of the mentioned fungi is estimated by M5 Pruned model tree (M5P), Gaussian Processes (GP), and Sequential Minimal Optimization (SMOreg) algorithms as the prediction section of DSS. Finally, the control stage of DSS is provided by integrated Petri Net modeling and Failure Modes and Effects Analysis (FMEA). The findings showed that Aeration Intensity (AI) and Fungi load/Biological Waste (F/BW) are the most influential mechanical and biological factors, with P-value of 0.0001 and 0.0003, respectively. Likewise, the optimal values of main mechanical parameters include AI, and the space between pipes (S) are equal to 13.76 m³/h and 15.99 cm, respectively. Also, the optimum conditions of biological features containing F/BW and pH are 0.001 mg/g and 7.56. In accordance with the kinetic study, bioremediation of toluene by Fusarium Solani is done based on a first-order reaction with a 0.034 s-1 kinetic coefficient. Finally, the machine learning practices showed that the GP (R2 = 0.98) and M5P (R2 = 0.94) have the most precision for predicting Removal Percentage (RP) for mechanical and biological factors, respectively. At the end of the present research, it is found that by controlling seven possible risk factors in bioremediation operation through the FMEA- Petri Net technique, efficiency of the process can be adjusted to optimum value.
اظهر المزيد [+] اقل [-]Iron oxide nanoparticles impart cross tolerance to arsenate stress in rice roots through involvement of nitric oxide
2022
Rai, Padmaja | Pratap Singh, Vijay | Sharma, Samarth | Tripathi, Durgesh Kumar | Sharma, Shivesh
The growth and development patterns of crop plants are being seriously threatened by arsenic (As) contamination in the soil, and it also acts as a major hurdle in crop productivity. This study focuses on arsenate As(V) mediated toxicity in rice plants. Further, among the different type of NPs, iron oxide nanoparticles (FeO NPs) display a dose-dependent effect but their potential role in mitigating As(V) stress is still elusive. FeO NPs (500 μM) play a role in imparting cross-tolerance against As(V) induced toxicity in rice. Growth attributes, photosynthetic performance, nutrient contents and biochemical parameters were significantly altered by As(V). But FeO NPs rescued the negative consequences of As(V) by restricting its entry with the possible involvement of NO in rice roots. Moreover, results related with gene expression of NO(OsNoA1 and OsNIA1) and proline metabolism were greatly inhibited by As(V) toxicity. But, FeO NPs reversed the toxic effect of As(V) by improving proline metabolism and stimulating NO mediated up-regulation of antioxidant enzymes particularly glutathione-S-transferase which may be possible reasons for the reduction of As(V) toxicity in rice roots. Overall, it can be stated that FeO NPs may act as an As(V) barrier to restrict the As(V) uptake by roots and have the ability to confer cross tolerance by modulating various morphological, biochemical and molecular characteristics with possible intrinsic involvement of NO.
اظهر المزيد [+] اقل [-]Responses of reconstituted human bronchial epithelia from normal and health-compromised donors to non-volatile particulate matter emissions from an aircraft turbofan engine
2022
Delaval, Mathilde N. | Jonsdottir, Hulda R. | Leni, Zaira | Keller, Alejandro | Brem, Benjamin T. | Siegerist, Frithjof | Schönenberger, David | Durdina, Lukas | Elser, Miriam | Salathe, Matthias | Baumlin, Nathalie | Lobo, Prem | Burtscher, Heinz | Liati, Anthi | Geiser, Marianne
Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 10⁹ particles cm⁻² or 337.1 ng cm⁻². Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.
اظهر المزيد [+] اقل [-]Sodium alginate/magnetic hydrogel microspheres from sugarcane bagasse for removal of sulfamethoxazole from sewage water: Batch and column modeling
2022
Prasannamedha, G. | Kumar, P Senthil | Shivaani, S. | Kokila, M.
Magnetic carbon were synthesized from sugarcane bagasse using hydrothermal carbonization followed by thermal activation was converted to solid state as beads (hydrogels SACFe) using sodium alginate and applied as adsorbent in removal sulfamethoxazole in batch and column mode. From adsorption parameter analysis it was confirmed that 0.6 g L⁻¹ SACFe was effective in removing 50 mg L⁻¹ of SMX at pH 6.2. Sorption of SMX on SACFe beads followed Elovich kinetics and Freundlich isotherm. It was further confirmed that sorption occurred on heterogeneous surface of SACFe beads with chemisorption as rate limiting step. Maximum adsorption capacity was obtained as 58.439 mg g⁻¹ pH studies revealed that charged assisted hydrogen bonding, EDA interactions are some of the mechanism that favoured removal of SMX. From column studies it was found that bead height of 2 cm and flow rate of 1.5 mL min⁻¹ found to be best in removing pollutant. Thomas model fitted better the experimental data stating that improved interaction between adsorbent and adsorbate act as major driving force tool in obtaining maximum sorption capacity. Breakthrough curve was completely affected by varied flow rate and bed height. Column adsorption was effective in reducing COD and BOD levels of sewage which are affected by toxic pollutants and miscellaneous compounds. Feasibility analysis showed that SACFe beads could be employed for real-time applications as it is cost, energy effective and easy recovery.
اظهر المزيد [+] اقل [-]Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek
2022
Tauqeer, Hafiz Muhammad | Basharat, Zeeshan | Adnan Ramzani, Pia Muhammad | Farhad, Muniba | Lewińska, Karolina | Turan, Veysel | Karczewska, Anna | Khan, Shahbaz Ali | Faran, Gull-e | Iqbal, Muhammad
Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)−mediated release of PO₄³⁻ from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg⁻¹ soil) was amended with APII powder (APII−P), APII char (APII−C), and A. niger inoculum as separate doses, and combining A. niger with APII−P (APII−P + A. niger) and APII−C (APII−C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII−C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII−C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg⁻¹ DW, remaining within the permissible limit set by WHO/FAO (2007). The APII−C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO₄³⁻ from APII−C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII−C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.
اظهر المزيد [+] اقل [-]