خيارات البحث
النتائج 1691 - 1700 من 1,955
An eco-friendly method for short term preservation of skins/hides using Semecarpus anacardium nut extract النص الكامل
2013
Iyappan, Kuttalam | Ponrasu, Thangavel | Sangeethapriya, Vilvanathan | Gayathri, Vinaya Subramani | Suguna, Lonchin
Preservation or curing of hides and skins is performed as the primary step of leather processing. Common salt is employed as the conventional agent for curing purpose. Use of salt enhances the pollution load of tannery effluent which becomes highly contaminated with increased total dissolved solids and chlorides. To overcome this hurdle, researchers are in constant search of alternative preservation techniques which are either totally void of salt or use only a meager amount of salt. In the present study, we had explored the possibility of using Semecarpus anacardium nut extract as an alternative to salt for the curing process by assessing different parameters like hair slip, putrefaction odor, volatile nitrogen content, moisture content, bacterial count, and shrinkage temperature in comparison to the salt curing method. The antibacterial property of the plant extract was also investigated. The results obtained substantiated that the nut extract of S. anacardium effectively could preserve the skins for more than a month, by its antibacterial activity along with the dehydrating property of acetone.
اظهر المزيد [+] اقل [-]Trace metals in Ganges soft-shell turtle (Aspideretes gangeticus) from two barrage: Baloki and Rasul, Pakistan النص الكامل
2013
Malik, Riffat Naseem | Ghaffar, Bushra | Hashmi, Muhammad Zaffar
The concentration of nine metals was measured in liver, kidney, heart, muscle, plastron, and carapace of Aspideretes gangeticus from Rasul and Baloki barrages, Pakistan. The results indicated that metal concentration were significant different among tissues of Ganges soft-shell turtles. However, higher concentrations of Co (5.12 μg/g) and Ni (1.67 μg/g) in liver, Cd (0.41 μg/g) in heart, Fe (267.45 μg/g), Cd (2.12 μg/g) and Mn (2.47 μg/g) in kidney, Cd (0.23 μg/g), Cu (2.57 μg/g), Fe (370.25 μg/g), Mn (5.56 μg/g), and Pb (8.23 μg/g) in muscle of A. gangeticus were recorded at Baloki barrage than Rasul barrage. Whereas mean concentrations of Pb (3.33 μg/g) in liver, Co (1.63 μg/g), Cu (11.32 μg/g), Pb (4.8 μg/g) and Zn (144.69 μg/g) in heart, Co (4.12 μg/g) in muscle, Ni (1.31 μg/g), Pb (2.18 μg/g), and Zn (9.78 μg/g) in carapace were recorded higher at Rasul barrage than Baloki barrage. The metals followed the trend Fe > Zn > Ni > Cu > Mn > Pb > Cr > Co > Cd. Metals of toxicological concern such as Cr, Pb, and Cd were at that level which can cause harmful effects to turtles. The results provide baseline data of heavy metals on freshwater turtle species of Pakistan.
اظهر المزيد [+] اقل [-]Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes? النص الكامل
2013
Hedfi, Amor | Boufahja, Fehmi | Ben Ali, Manel | Aïssa, Patricia | Mahmoudi, Ezzeddine | Beyrem, Hamouda
The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.
اظهر المزيد [+] اقل [-]Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges النص الكامل
2013
d’Abzac, Paul | Bordas, François | Joussein, Emmanuel | van Hullebusch, Eric D. | Lens, P. N. L. (Piet N. L.) | Guibaud, Gilles
Extracellular polymeric substances (EPS) were extracted from four anaerobic granular sludges with different procedures to study their involvement in biosorption of metallic elements. EPS extracts are composed of closely associated organic and mineral fractions. The EPS macromolecules (proteins, polysaccharides, humic-like substances, nucleic, and uronic acids) have functional groups potentially available for the binding of metallic elements. The acidic constants of these ionizable groups are: pK ₐ₁ (4–5) corresponding to the carboxyl groups; pK ₐ₂ (6–7) corresponding to the phosphoric groups; pK ₐ₃ (8–10) and pK ₐ₄ (≈10) corresponding to the phenolic, hydroxyl, and amino groups. The polarographic study confirms the higher affinity of the EPS to bind to lead than to cadmium. Moreover, the binding of these metallic compounds with the EPS is a mix of several sorption mechanisms including surface complexation, ion exchange, and flocculation. Inorganic elements were found as ions linked to organic molecules or as solid particles. The mineral fraction affects the binding properties of the EPS, as the presence of salts decreases the EPS binding ability. Calcite and apatite particles observed on SEM images of EPS extracts can also sorb metallic elements through ion exchange or surface complexation.
اظهر المزيد [+] اقل [-]Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption النص الكامل
2013
Kaushik, Prachi | Malik, Anushree
Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7–94.3 %) and cationic (35.4–90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.
اظهر المزيد [+] اقل [-]Historical reconstruction of atmospheric lead pollution in central Yunnan province, southwest China: an analysis based on lacustrine sedimentary records النص الكامل
2013
Liu, Enfeng | Zhang, Enlou | Li, Kai | Nath, Bibhash | Li, Yanling | Shen, Ji
Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using (210)Pb and (137)Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios and enrichment factors (EFs = ~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m(-2) year(-1) recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.
اظهر المزيد [+] اقل [-]Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks النص الكامل
2013
Buse, Helen Y. | Lu, Jingrang | Struewing, Ian T. | Ashbolt, Nicholas J.
The goal of this study was to characterize microbial eukaryotes over a 12-month period to provide insight into the occurrence of potential bacterial predators and hosts in premise plumbing. Nearly 6,300 partial 18S rRNA gene sequences from 24 hot (36.9-39.0 °C) and cold (6.8-29.1 °C) drinking water samples were analyzed and classified into major eukaryotic groups. Each major group, consisting of free-living amoebae (FLA)/protozoa, algae, copepods, dinoflagellates, fungi, nematodes, and unique uncultured eukaryotic sequences, showed limited diversity dominated by a few distinct populations, which may be characteristic of oligotrophic environments. Changes in the relative abundance of predators such as nematodes, copepods, and FLA appear to be related to temperature and seasonal changes in water quality. Sequences nearly identical to FLA such as Hartmannella vermiformis, Echinamoeba thermarmum, Pseudoparamoeba pagei, Protacanthamoeba bohemica, Platyamoeba sp., and Vannella sp. were obtained. In addition to FLA, various copepods, rotifers, and nematodes have been reported to internalize viral and bacterial pathogens within drinking water systems thus potentially serving as transport hosts; implications of which are discussed further. Increasing the knowledge of eukaryotic occurrence and their relationship with potential pathogens should aid in assessing microbial risk associated with various eukaryotic organisms in drinking water.
اظهر المزيد [+] اقل [-]Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome النص الكامل
2013
Gatica, Joao | Cytryn, Eddie
The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.
اظهر المزيد [+] اقل [-]Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the three gorges reservoir in China النص الكامل
2013
Zhang, Zhiyong | Wan, Chengyan | Zheng, Zhiwei | Hu, Lian | Feng, Kun | Chang, Jianbo | Xie, Ping
The annual water level regulating of the Three Gorges Reservoir prolonged the submerged duration (from 2 to 8 months) and resulted in the reversal of natural flood rhythms (winter submerged). These changes might alter plant community characteristics in the water level fluctuation zone (WLFZ). The aim of this study was to determine the plant community characteristics in the WLFZ and their responses to the environmental factors (i.e., annual hydrological regulation, topographic characteristics, soil physical properties and soil nutrients). The height, coverage, frequency and biomass of each plant species and the soil properties at each elevation zone (150, 155, 160, 165 and 170 m) were measured from March to September in 2010. Univariate two-factor analysis and redundancy analysis (RDA) were used to analyze the spatial and temporal variations of the community characteristics and identify the key environmental factors influencing vegetation. We found that 93.2 % of the species analysed were terrestrial vascular plants. Annual herbs made up the highest percentage of life forms at each altitude. The differences in the species number per square metre, the Shannon-Wiener diversity index and the biomass of vegetation demonstrated statistical significance with respect to sampling time but not elevation. The most dominant species at altitudes of 150, 155, 160, 165 and 170 m were Cynodon dactylon, Cyperus rotundus, Digitaria sanguinalis, Setaria viridis and Daucus carota, respectively. The concentrations of soil nutrients appeared to be the lowest at an altitude of 150 m, although the differences with respect to elevation were not significant. The results of the RDA indicated that the key factors that influenced the species composition of vegetation were elevation, slope, pH and the concentration of soil available phosphorus.
اظهر المزيد [+] اقل [-]Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction النص الكامل
2013
Yassin, Mohamed F.
Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier–Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H = 1/2, 3/4, and 1) and wind directions (θ = 90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H = 1/2 and 1 and wind directions θ = 112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.
اظهر المزيد [+] اقل [-]