خيارات البحث
النتائج 171 - 180 من 4,029
Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review
2016
Zhong, Jian | Cai, Xiao-Ming | Bloss, William James
Air pollutants emitted from vehicles in street canyons may be reactive, undergoing mixing and chemical processing before escaping into the overlying atmosphere. The deterioration of air quality in street canyons occurs due to combined effects of proximate emission sources, dynamical processes (reduced dispersion) and chemical processes (evolution of reactive primary and formation of secondary pollutants). The coupling between dynamics and chemistry plays a major role in determining street canyon air quality, and numerical model approaches to represent this coupling are reviewed in this article. Dynamical processes can be represented by Computational Fluid Dynamics (CFD) techniques. The choice of CFD approach (mainly the Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models) depends on the computational cost, the accuracy required and hence the application. Simplified parameterisations of the overall integrated effect of dynamics in street canyons provide capability to handle relatively complex chemistry in practical applications. Chemical processes are represented by a chemical mechanism, which describes mathematically the chemical removal and formation of primary and secondary species. Coupling between these aspects needs to accommodate transport, dispersion and chemical reactions for reactive pollutants, especially fast chemical reactions with time scales comparable to or shorter than those of typical turbulent eddies inside the street canyon. Different approaches to dynamical and chemical coupling have varying strengths, costs and levels of accuracy, which must be considered in their use for provision of reference information concerning urban canopy air pollution to stakeholders considering traffic and urban planning policies.
اظهر المزيد [+] اقل [-]Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland)
2016
Kowalska, Joanna | Mazurek, Ryszard | Gąsiorek, Michał | Setlak, Marcin | Zaleski, Tomasz | Waroszewski, Jaroslaw
The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (Igeo), Enrichment Factor (EF), Sum of Pollution Index (PIsum), Single Pollution Index (PI), Nemerow Pollution Index (PINemerow) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually.
اظهر المزيد [+] اقل [-]Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin
2016
Wang, Jiao | Zhou, Ming | Liu, Bao-shuang | Wu, Jian-hui | Peng, Xing | Zhang, Yu-fen | Han, Su-qin | Feng, Yin-chang | Zhu, Tan
To investigate the size distributions of chemical compositions and sources of particulate matter (PM) at ground level and from the urban canopy, a study was conducted on a 255 m meteorological tower in Tianjin from December 2013 to January 2014. Thirteen sets of 8 size-segregated particles were collected with cascade impactor at 10 m and 220 m. Twelve components of particles, including water-soluble inorganic ions and carbonaceous species, were analyzed and used to apportion the sources of PM with positive matrix factorization. Our results indicated that the concentrations, size distributions of chemical compositions and sources of PM at the urban canopy were affected by regional transport due to a stable layer approximately 200 m and higher wind speed at 220 m. The concentrations of PM, Cl− and elemental carbon (EC) in fine particles at 10 m were higher than that at 220 m, while the reverse was true for NO3− and SO42−. The concentrations of Na+, Ca2+, Mg2+, Cl− and EC in coarse particles at 10 m were higher than that at 220 m. The size distributions of major primary species, such as Cl−, Na+, Ca2+, Mg2+ and EC, were similar at two different heights, indicating that there were common and dominant sources. The peaks of SO42−, NH4+, NO3− and organic carbon (OC), which were partly secondary generated species, shifted slightly to the smaller particles at 220 m, indicating that there was a different formation mechanism. Industrial pollution and coal combustion, re-suspended dust and marine salt, traffic emissions and transport, and secondary inorganic aerosols were the major sources of PM at both heights. With the increase in vertical height, the influence of traffic emissions, re-suspended dust and biomass burning on PM weakened, but the characteristics of regional transport from Hebei Province and Beijing gradually become obvious.
اظهر المزيد [+] اقل [-]Assessment of air quality in preschool environments (3–5 years old children) with emphasis on elemental composition of PM10 and PM2.5
2016
Oliveira, Marta | Slezakova, Klara | Delerue-Matos, Cristina | Pereira, Maria Carmo | Morais, Simone
This study evaluated concentrations of main air pollutants in a Portuguese preschool (indoors/outdoors) environment, with emphasis on elemental characterization of different PM fractions, and estimated risks for the pupils (aged 3–5 years). With exception to total volatile organic compounds, levels of PM10, PM2.5, CO, CO2, and formaldehyde were below legislative guidelines. Calcium, sodium, aluminium, and potassium were the most abundant elements in indoor PM (82–84% of the analysed content) resulting mainly from crustal sources. Carcinogenic elements (1–2% of the indoor analysed content) were mostly PM2.5-bound (83–91%). Indoor-to-outdoor ratios of individual elements indicated contributions of indoor origin and from penetration of outdoor emissions indoors; trace metals were associated with ambient anthropogenic emissions (namely traffic). Non-carcinogenic and carcinogenic risks from overall preschool exposure were acceptable for children; for adults carcinogenic risks exceeded (4–11 times) the USEPA recommend value of 10−6, being 8–40 times higher than for children.
اظهر المزيد [+] اقل [-]COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues
2016
Guarienti, Michela | Cardozo, Sdenka Moscoso | Borgese, Laura | Lira, Gloria Rodrigo | Depero, Laura E. | Bontempi, Elza | Presta, Marco
Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material.
اظهر المزيد [+] اقل [-]Pulsation effects on pollutant and sediment transport in free-surface flow
2016
Khaldi, Nawel | Chouari, Yoldoss | Mhiri, Hatem | Bournot, Philippe
A series of numerical simulations are performed to study the pollutant and sediment transport in free surface channel flow. The present paper examines the dispersion of passive contaminants injected from a time periodic source in a fully developed turbulent flow. More precisely, the pulsation effects on the distribution behaviors of dissolved and particulate pollutants are analyzed and discussed. Simulations are carried out using a commercial Computational Fluid Dynamic (CFD) code, Fluent 6.3, which is based on the finite volume approach. The standard k−ε turbulence closure model is selected to simulate the turbulence generation and the Volume of Fluid (VOF) method is used to accurately capture the time varying free surface. The Discrete Phase Model (DPM) is used for capturing the movement of particles. Numerical results show that increasing pulsation amplitude and decreasing frequency generates higher dispersive effects in the concentration profiles of a dissolved pollutant. It is also concluded that, unlike dissolved substances, the particle transportation can be enhanced only for certain combinations of the pulsation amplitude and frequency due to the synchronization of the particle’s movement with the oscillating potential.•Increasing pulsation amplitude and decreasing frequency generates higher dispersive effects.•Particle transportation can be enhanced only for certain amplitude-frequency combinations.
اظهر المزيد [+] اقل [-]Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from medical waste incinerators (MWIs) in China in 2016: A comparison between higher emission levels of MWIs and lower emission levels of MWIs
2016
Li, Jiafu | Lv, Zhiwei | Du, Lei | Li, Xiaonan | Hu, Xuepeng | Wang, Chong | Niu, Zhiguang | Zhang, Ying
Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from 12 medical waste incinerators (MWIs) which have a total yearly capacity of 523 440 ton medical waste and accounted for 8.1% of total yearly capacity of 246 MWIs in China were studied. The congeners profile, emissions and toxic equivalent concentrations (TEQ) indicators of PCDD/Fs in stack gas from two groups of MWIs were researched, and the possible formation mechanisms of PCDD/Fs from MWIs were preliminarily discussed. The results of present study were summarized as follows. (1) The total concentrations and TEQ of PCDD/Fs in stack gas from MWIs were 0.516–122.803 ng Nm−3 and 0.031–3.463 ng I-TEQ Nm−3, respectively. (2) 1,2,3,4,6,7,8-H7CDF, O8CDD, O8CDF and 1,2,3,4,6,7,8-H7CDD were the indicatory PCDD/Fs of MWI source, which could be used to apportion the sources of PCDD/Fs in environmental medium in China. (3) The emission factors of PCDD/Fs from MWIs ranged from 32.7 to 4900.0 ng I-TEQ ton−1 with a mean of 1923.6 ng I-TEQ ton−1. (4) The gas emissions of PCDD/Fs from researched 12 MWIs and all of MWIs in China in 2016 were 37.742 and 465.951 mg I-TEQ year−1, respectively. (5) 1,2,3,7,8,9-H6CDF and 1,2,3,4,7,8-H6CDF were effective TEQ indicators for the real-time monitoring of the PCDD/Fs emission. (6) The congeners profile and factor composition of PCDD/Fs in stack gas from two groups of MWIs were researched based on positive matrix factorization (PMF) model, and the possible formation mechanisms of PCDD/Fs from MWIs were preliminarily discussed.
اظهر المزيد [+] اقل [-]Air quality impacts of a CicLAvia event in Downtown Los Angeles, CA
2016
Shu, Shi | Batteate, Christina | Cole, Brian | Froines, John R. | Zhu, Yifang
CicLAvia in Los Angeles, CA is the open streets program that closes streets to motorized vehicles and invites people to walk, run, play or ride their bicycles on these streets, allowing them to experience the city in a new way and get exercise at the same time. Since the events reduce the motorized traffic flow, which is a significant source of air pollution, on the streets, it is reasonable to hypothesize that the CicLAvia events can reduce the concentrations of traffic-emitted air pollutants during the road closure. This study is the first experiment to test this hypothesis. The on-road and community-wide ultrafine particle (UFP) and PM2.5 were measured on the Event-Sunday (October 5th, 2014) and the Pre- and Post- Sundays (September 28ᵗʰ and October 12ᵗʰ, 2014). Data analysis results showed the on-road UFP and PM2.5 reduction was 21% and 49%, respectively, and the community-wide PM2.5 reduction was 12%.
اظهر المزيد [+] اقل [-]Quantifying the influences of various ecological factors on land surface temperature of urban forests
2016
Ren, Yin | Deng, Lu-Ying | Zuo, Shu-Di | Song, Xiao-Dong | Liao, Yi-Lan | Xu, Cheng-Dong | Chen, Qi | Hua, Li-Zhong | Li, Zheng-Wei
Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST.
اظهر المزيد [+] اقل [-]Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media
2016
Han, Peng | Zhou, Dan | Tong, Meiping | Kim, Hyŏn-jŏng
The influence of bacteria on the transport and deposition behaviors of carbon nanotubes (CNTs) in quartz sand was examined in both NaCl (5 and 25 mM ionic strength) and CaCl2 (0.3 and 1.2 mM ionic strength) solutions at unadjusted pH (5.6–5.8) by direct comparison of both breakthrough curves and retained profiles in both the presence and absence of bacteria. Two types of widely utilized CNTs, i.e., carboxyl- and hydroxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH and MWCNT-OH, respectively), were employed as model CNTs and Escherichia coli was utilized as the model bacterium. The results showed that, for both types of MWCNTs under all examined conditions, the breakthrough curves were higher in the presence of bacteria, while the retained profiles were lower, indicating that the co-presence of bacteria in suspension increased the transport and decreased the deposition of MWCNTs in porous media, regardless of ionic strength or ion valence. Complementary characterizations and extra column tests demonstrated that competition by bacteria for deposition sites on the quartz sand surfaces was a major (and possibly the sole) contributor to the enhanced MWCNTs transport in porous media.
اظهر المزيد [+] اقل [-]