خيارات البحث
النتائج 171 - 180 من 5,151
Nerve conduction velocity as a non-destructive biomarker in the earthworm Aporrectodea caliginosa exposed to insecticides النص الكامل
2018
Mazzia, Christophe | Munir, Kiran | Wellby, Martin | Rault, Magali | Capowiez, Yvan | Gooneratne, Ravi | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Lincoln University [Nouvelle-Zélande]
International audience | Earthworms are important and useful soil organisms, but in agricultural soils, they are potentially exposed to a wide variety of pesticides. Insecticides represent the highest threat to earthworms and many are neurotoxic. There is a need for a reliable, relevant, simple biomarker to assess the sub-lethal effects of neurotoxic insecticides on earthworms under laboratory or field conditions. The Aporrectodea caliginosa earthworms were exposed to 0 (control), 0.5×, 1× (normal field application rate), and 5× concentrations of a carbamate (Pirimor®) and an organophosphate (Lorsban®) insecticides. The nerve conduction velocity (NCV) of the medial giant fibers of A. caliginosa earthworm was recorded on days 0, 1, 2, 3, 4, and 7 to quantify sub-lethal neurotoxic effects. Acetylcholinesterase (AChE) enzyme activity of A. caliginosa homogenates was measured at the conclusion of the experiment. Pirimor® but not Lorsban® induced a significant decrease in NCV on days 3, 4, and 7 at 1× and 5× doses. A significant dose-dependent decrease was observed on AChE activity to Pirimor® at the doses used but not Lorsban®. A clear relationship is observed between AChE activity and NCV in the case of Pirimor®. This study showed that NCV is a sensitive biomarker that correlates well with classical biomarker measurements such as AChE enzyme activity. This technique could be used to study the impact of insecticides on earthworms and also their recovery.
اظهر المزيد [+] اقل [-]An exploratory study of energy reserves and biometry as potential tools for assessing the effects of pest management strategies on the earwig, Forficula auricularia L النص الكامل
2018
Suchail, Séverine | Le Navenant, Adrien | Capowiez, Yvan | Thiéry, Alain | Rault, Magali | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA)
International audience | Apple orchards are heavily treated crops and some sprayed insecticides are recognized to have toxic effects on non-target arthropods. Earwigs are important natural enemies in pip-fruit orchards and contribute to the biological control of aphids. In addition, due to their ease of capture and identification, they are an interesting potential bioindicator of the possible detrimental effects of different orchard management strategies. In this study, we measured the energy reserves and some morphological traits of Forficula auricularia L. sampled in apple orchards under management strategies (organic versus integrated pest management (IPM)). We observed a significant decrease in mass (22 to 27%), inter-eye width (3%), and prothorax width (2 to 5%) in earwigs from IPM compared to organic orchards. Energy body reserves also confirmed these results with a significant decrease of 48% in glycogen and 25 to 42% in lipid content in earwigs from IPM compared to organic orchards. However, the protein content was approximately 70% higher in earwigs from IPM than in organic orchards. Earwigs sampled in IPM orchards may adapt to minimize the adverse toxic effects of pesticide treatments using a large number of strategies, which are reflected in changes to their energy reserves. These strategies could, in turn, influence the population dynamics of natural enemies and impair their role in the biological control of pests in apple orchards.
اظهر المزيد [+] اقل [-]Contrasted effects of an anti-cyanobacterial ultrasound device on the non-target freshwater invertebrate species Gammarus roeseli النص الكامل
2018
Techer, Didier | Banas, Damien | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Region Grand-Est | SO.GE.EAU
International audience | The aim of this work was to investigate the effects of an anti-cyanobacterial ultrasound device (supplied by an electrical power of 15 W and emitting at 23 and 46 kHz) on the widespread freshwater amphipod species Gammarus roeseli. First, laboratory scale experiments in 8-L glass tanks showed that an ultrasound exposure of 2 h and 40 min was sufficient to produce 50% mortality, along with a 6.5 °C water temperature increase. Avoiding excessive heating by using a water-cooling and recirculation system permitted an exposure time of 29 h for the same mortality rate. A potential relationship between temperature's rise and amphipod mortality was hence highlighted. Moreover, the use of plastic mesh bag (0.5 mm mesh size) as a physical barrier has not shown any lethal effects of ultrasound exposure. Furthermore, the induction of GPx or GST activity as oxidative stress biomarkers was not observed. This could be explained by reduced ultrasound intensity inside the mesh bags. Thus, according to these results, the tested ultrasound system is not expected to be acutely harmful in the field.
اظهر المزيد [+] اقل [-]Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China النص الكامل
2018
Liu, Yafei | Zhang, You | Li, Chuang | Bai, Yun | Zhang, Daoming | Xue, Chunyu | Liu, Guangqing
Pollutant emissions from incomplete combustion of raw coal in low-efficiency residential heating stoves greatly contribute to winter haze in China. Semi-coke coals and improved heating stoves are expected to lower air pollutant emissions and are vigorously promoted by the Chinese government in many national and local plans. In this study, the thermal performance and air pollutant emissions from semi-coke combustion in improved heating stoves were measured in a pilot rural county and compared to the baseline of burning raw coal to quantify the mitigation potential of air pollutant emissions. A total of five stove-fuel combinations were tested, and 27 samples from 27 different volunteered households were obtained. The heating efficiency of improved stoves increased, but fuel consumption appeared higher with more useful energy output compared to traditional stoves. The emission factors of PM2.5, SO2, and CO2 of semi-coke burning in specified improved stoves were lower than the baseline of burning raw coal chunk, but no significant NOx and CO decreases were observed. The total amount of PM2.5 and SO2 emissions per household in one heating season was lower, but CO, CO2, and NOx increased when semi-coke coal and specified improved stoves were deployed. Most differences were not statistically significant due to the limited samples and large variation, indicating that further evaluation would be needed to make conclusions that could be considered for policy.
اظهر المزيد [+] اقل [-]Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer النص الكامل
2018
Hong, Tran Thu | Okabe, Hirotaka | Hidaka, Yoshiki | Hara, Kazuhiro
This article exploits a new approach for synthesis of polysaccharide-based grafted sodium styrene sulfonate (SSS) super absorbent hydrogels (SAHs) in aqueous solution by γ-radiation under ambient conditions. Important optimal conditions for preparation of hydrogels with the best swelling ratio, such as gamma irradiation dose and the ratio of feed composition have been discussed. Characterization techniques such as the SEM/EDS, FTIR and DSC were used in describing the newly prepared hydrogels. The FTIR gave characteristic peaks for -SO₃Na group at 1042 and 988 cm⁻¹, showing successful grafting of SSS onto the polysaccharide base material. The dependence of swelling behaviors in various pH solutions and salts solutions were investigated in detail. The prepared hybrid hydrogel showed most optimum swelling capacity at neutral pH whereas equilibrium swelling of SAHs was achieved within 5 h. The swelling of SAHs influenced obviously to metal ion removal percentage in solution.
اظهر المزيد [+] اقل [-]Trace organic contaminants in urban runoff: Associations with urban land-use النص الكامل
2018
Burant, Aniela | Selbig, William | Furlong, Edward T. | Higgins, Christopher P.
Urban development has led to an increase in urban runoff, accompanied with a decrease in water quality during rain events. One of the major causes of the decrease in water quality is the presence of trace organic contaminants in urban runoff. However, little is known about the sources of organic contaminants in urban runoff, especially related to land-use and temporal trends in those associated land uses. The objective of this study was to assess the occurrence and concentration trends of organic contaminants for a high-density residential site and commercial strip site in Madison, WI. Flow-weighted samples of urban stormwater runoff, collected with an auto-sampler, were composited and analyzed, producing mean organic contaminants concentrations for each storm event. The contaminants, which include pesticides, flame retardants, polycyclic aromatic hydrocarbons, corrosion inhibitors, among others, were extracted and analyzed by gas chromatography coupled with mass spectrometry or liquid chromatography coupled with tandem mass spectrometry. There were 30 organic contaminants that had greater than 50% detections in at least one of the sites, and those organic contaminants did provide information on similarities and differences of organic contaminants in urban runoff derived from different land uses. The sum of the total measured pesticides showed no significant difference between sites; this was likely due to the considerable green space and associated pesticide use in both sites. However, there were higher total concentrations of organophosphate flame retardants and corrosion inhibitors in the residential site. The reason for this is unknown and will require follow-up studies; however, several hypotheses are presented. Conversely, there were higher total concentrations of polycyclic aromatic hydrocarbons in the commercial site; this is most likely due to higher vehicle traffic in the commercial site. These data show that land-use may be important in determining the composition and concentrations of trace organic contaminants in urban stormwater runoff.
اظهر المزيد [+] اقل [-]A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum النص الكامل
2018
Long, Marc | Tallec, Kévin | Soudant, Philippe | Lambert, Christophe | Le Grand, Fabienne | Sarthou, Géraldine | Jolley, Dianne | Hégaret, Hélène
A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum النص الكامل
2018
Long, Marc | Tallec, Kévin | Soudant, Philippe | Lambert, Christophe | Le Grand, Fabienne | Sarthou, Géraldine | Jolley, Dianne | Hégaret, Hélène
Harmful microalgal blooms are a threat to aquatic organisms, ecosystems and human health. Toxic dinoflagellates of the genus Alexandrium are known to produce paralytic shellfish toxins and to release bioactive extracellular compounds (BECs) with potent cytotoxic, hemolytic, ichtyotoxic and allelopathic activity. Negative allelochemical interactions refer to the chemicals that are released by the genus Alexandrium and that induce adverse effects on the physiology of co-occurring protists and predators. Releasing BECs gives the donor a competitive advantage that may help to form dense toxic blooms of phytoplankton. However BECs released by Alexandrium minutum are uncharacterized and it is impossible to quantify them using classical chemical methods. Allelochemical interactions are usually quantified through population growth inhibition or lytic-activity based bioassays using a secondary target organism. However these bioassays require time (for growth or microalgal counts) and/or are based on lethal effects. The use of pulse amplitude modulation (PAM) fluorometry has been widely used to assess the impact of environmental stressors on phytoplankton but rarely for allelochemical interactions. Here we evaluated the use of PAM and propose a rapid chlorophyll fluorescence based bioassay to quantify allelochemical BECs released from Alexandrium minutum. We used the ubiquitous diatom Chaetoceros muelleri as a target species. The bioassay, based on sub-lethal effects, quantifies allelochemical activity from different samples (filtrates, extracts in seawater) within a short period of time (2 h). This rapid bioassay will help investigate the role of allelochemical interactions in Alexandrium bloom establishment. It will also further our understanding of the potential relationship between allelochemical activities and other cytotoxic activities from BECs. While this bioassay was developed for the species A. minutum, it may be applicable to other species producing allelochemicals and may provide further insights into the role and impact of allelochemical interactions in forming dense algal blooms and structuring marine ecosystems.
اظهر المزيد [+] اقل [-]A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum النص الكامل
2018
Long, Marc | Tallec, Kevin | Soudant, Philippe | Lambert, Christophe | Le Grand, Fabienne | Sarthou, Geraldine | Jolley, Dianne | Hegaret, Helene
Harmful microalgal blooms are a threat to aquatic organisms, ecosystems and human health. Toxic dinoflagellates of the genus Alexandrium are known to produce paralytic shellfish toxins and to release bioactive extracellular compounds (BECs) with potent cytotoxic, hemolytic, ichtyotoxic and allelopathic activity. Negative allelochemical interactions refer to the chemicals that are released by the genus Alexandrium and that induce adverse effects on the physiology of co-occurring protists and predators. Releasing BECs gives the donor a competitive advantage that may help to form dense toxic blooms of phytoplankton. However BECs released by Alexandrium minutum are uncharacterized and it is impossible to quantify them using classical chemical methods. Allelochemical interactions are usually quantified through population growth inhibition or lytic-activity based bioassays using a secondary target organism. However these bioassays require time (for growth or microalgal counts) and/or are based on lethal effects. The use of pulse amplitude modulation (PAM) fluorometry has been widely used to assess the impact of environmental stressors on phytoplankton but rarely for allelochemical interactions. Here we evaluated the use of PAM and propose a rapid chlorophyll fluorescence based bioassay to quantify allelochemical BECs released from Alexandrium minutum. We used the ubiquitous diatom Chaetoceros muelleri as a target species. The bioassay, based on sub-lethal effects, quantifies allelochemical activity from different samples (filtrates, extracts in seawater) within a short period of time (2 h). This rapid bioassay will help investigate the role of allelochemical interactions in Alexandrium bloom establishment. It will also further our understanding of the potential relationship between allelochemical activities and other cytotoxic activities from BECs. While this bioassay was developed for the species A. minutum, it may be applicable to other species producing allelochemicals and may provide further insights into the role and impact of allelochemical interactions in forming dense algal blooms and structuring marine ecosystems.
اظهر المزيد [+] اقل [-]Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake النص الكامل
2018
Yang, Yuyi | Wang, Weibo
Benzylalkyldimethylethyl ammonium compounds are pervasive in natural environments and toxic at high concentrations. The changes in functional genes and microbial diversity in eutrophic lake samples exposed to benzyldimethyldodecyl ammonium chloride (BAC) were assessed. BAC exerted negative effects on bacteria abundance, particularly at concentrations of 100 μg L−1 and higher. A significant increase in the number of the quaternary ammonium compound-resistant gene qacA/B was recorded within the 10 μg L−1 treatment after the first day of exposure. Not all antibiotic resistance genes increased in abundance as the concentrations of BAC increased; rather, gene abundances were dependent on the gene type, concentrations of BAC, and contact time. The nitrogen fixation-related gene nifH and ammonia monooxygenase gene amoA were inhibited by high concentrations of BAC after the first day, whereas an increase of the nitrite reductase gene nirK was stimulated by exposure. Microbial communities within higher treatment levels (1000 and 10 000 μg L−1) exhibited significantly different community composition compared to other treatment levels and the control. Selective enrichment of Rheinheimera, Pseudomonas, and Vogesella were found in the higher treatment levels, suggesting that these bacteria have some resistance or degradation capacity to BAC. Genes related with RNA processing and modification, transcription, lipid transport and metabolism, amino acid transport and metabolism, and cell motility of microbial community function were involved in the process exposed to the BAC stress.
اظهر المزيد [+] اقل [-]Aberrations of the peripheral erythrocytes and its recovery patterns in a freshwater teleost, silver barb exposed to profenofos النص الكامل
2018
Khan, Mst Mansura | Moniruzzaman, Md | Mostakim, Golam Mohammod | Khan, Mohammad Sadequr Rahman | Rahman, Md Khalilur | Islam, M Sadiqul
The present experiment was conducted to explicate the genotoxic effects of profenofos, an organophosphate insecticide, on the erythrocytes of silver barb (Barbonymus gonionotus). Silver barb were exposed to a solution of 10% and 50% of lethal concentrations (LC₅₀) of profenofos as sub-lethal concentrations at different days (1, 7, 15, and 30 d), along with a control (0% profenofos). Subsequent recovery patterns were assessed allowing the fish exposed to profenofos free water for the same period that they were exposed to profenofos. Our results revealed that with the progression of time and concentration, fish exposed to profenofos showed significantly (p < .05) higher level of erythrocytic nuclear abnormalities (ENA) such as micronuclei, bi-nuclei, degenerated nuclei, notched nuclei, nuclear bridge and nuclear buds, as well as erythrocytic cellular abnormalities (ECA) such as echinocytic, elongated, fusion, spindle, tear-drop and twin shaped cells. After exposure, the silver barb recovered spontaneously, and the abnormal erythrocytic parameters were normalized with a concentration- and duration-dependent fashion. Therefore, these abnormalities and their recovery can be used to assess the toxic levels of pesticides on aquatic organisms. There is great potential to use this technique as in vivo to predict susceptibility of aquatic animals to environmental pollution.
اظهر المزيد [+] اقل [-]Anaerobic digestion as an alternative disposal for phytoremediated biomass from heavy metal contaminated sites النص الكامل
2018
Lee, Jongkeun | Park, Ki Young | Cho, Jinwoo | Kwon, Eilhann E. | Kim, Chae-yŏng
It is desirable to establish an environmentally benign platform for disposing biomass from the phytoremediation process while recovering energy is of importance. To this end, the biochemical methane potential (BMP) tests were conducted using four different biomass samples (i.e., sunflower: Helianthus annuus) that were obtained from the different remediation sites. In particular, this study laid great emphasis on evaluating the inhibition for the anaerobic digestion (AD) process induced by endogenous heavy metal (Cd, Cu, Ni, Pb, and Zn) content in biomass. Despite the high levels of heavy metal contents (Cd: 58.4, Cu: 23.0, Ni: 2.01, Pb: 9.88, and Zn: 146 mg kg⁻¹) in the substrate for the AD process, the overall performance was comparable relative to the case of the references. Therefore, this study signified that the inhibition derived from heavy metals was nearly negligible, which suggested that biomass from the phytoremediation site could be used as a substrate for the AD process.
اظهر المزيد [+] اقل [-]