خيارات البحث
النتائج 171 - 180 من 6,473
Disinfection by-products in drinking water: Occurrence, toxicity and abatement
2020
Srivastav, Arun Lal | Patel, Naveen | Chaudhary, Vinod Kumar
Disinfection means the killing of pathogenic organisms (e.g. bacteria and its spores, viruses, protozoa and their cysts, worms, and larvae) present in water to make it potable for other domestic works. The substances used in the disinfection of water are known as disinfectants. At municipal level, chlorine (Cl₂), chloramines (NH₂Cl, NHCl₂), chlorine dioxide (ClO₂), ozone (O₃) and ultraviolet (UV) radiations, are the most commonly used disinfectants. Chlorination, because of its removal efficiency and cost effectiveness, has been widely used as method of disinfection of water. But, disinfection process may add several kinds of disinfection by-products (DBPs) (∼600–700 in numbers) in the treated water such as Trihalomethanes (THM), Haloacetic acids (HAA) etc. which are detrimental to the human beings in terms of cytotoxicity, mutagenicity, teratogenicity and carcinogenicity. In water, THMs and HAAs were observed in the range from 0.138 to 458 μg/L and 0.16–136 μg/L, respectively. Thus, several regulations have been specified by world authorities like WHO, USEPA and Bureau of Indian Standard to protect human health. Some techniques have also been developed to remove the DBPs as well as their precursors from the water. The popular techniques of DBPs removals are adsorption, advance oxidation process, coagulation, membrane based filtration, combined approaches etc. The efficiency of adsorption technique was found up to 90% for DBP removal from the water.
اظهر المزيد [+] اقل [-]Gene expression response of the alga Fucus virsoides (Fucales, Ochrophyta) to glyphosate solution exposure
2020
Gerdol, Marco | Visintin, Andrea | Kaleb, Sara | Spazzali, Francesca | Pallavicini, Alberto | Falace, Annalisa
Fucus virsoides is an ecologically important canopy-forming brown algae endemic to the Adriatic Sea. Once widespread in marine coastal areas, this species underwent a rapid population decline and is now confined to small residual areas. Although the reasons behind this progressive disappearance are still a matter of debate, F. virsoides may suffer, like other macroalgae, from the potential toxic effects of glyphosate-based herbicides.Here, through a transcriptomic approach, we investigate the molecular basis of the high susceptibility of this species to glyphosate solution, previously observed at the morphological and eco-physiological levels. By simulating runoff event in a factorial experiment, we exposed F. virsoides to glyphosate (Roundup® 2.0), either alone or in association with nutrient enrichment, highlighting significant alterations of gene expression profiles that were already visible after three days of exposure. In particular, glyphosate exposure determined the near-complete expression shutdown of several genes involved in photosynthesis, protein synthesis and stress response molecular pathways. Curiously, these detrimental effects were partially mitigated by nutrient supplementation, which may explain the survival of relict population in confined areas with high nutrient inputs.
اظهر المزيد [+] اقل [-]Exposure to 2,3,3′,4,4′,5-hexachlorobiphenyl promotes nonalcoholic fatty liver disease development in C57BL/6 mice
2020
Shan, Qiuli | Chen, Ningning | Liu, Wei | Qu, Fan | Chen, Anhui
Previous in vitro studies have indicated that 2,3,3′,4,4′,5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid β-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.
اظهر المزيد [+] اقل [-]Spatiotemporal dynamics and impacts of socioeconomic and natural conditions on PM2.5 in the Yangtze River Economic Belt
2020
Liu, Xiao-Jie | Xia, Si-You | Yang, Yu | Wu, Jing-fen | Zhou, Yan-Nan | Ren, Ya-Wen
The determination of the spatiotemporal patterns and driving factors of PM₂.₅ is of great interest to the atmospheric and climate science community, who aim to understand and better control the atmospheric linkage indicators. However, most previous studies have been conducted on pollution-sensitive cities, and there is a lack of large-scale and long-term systematic analyses. In this study, we investigated the spatiotemporal evolution of PM₂.₅ and its influencing factors by using an exploratory spatiotemporal data analysis (ESTDA) technique and spatial econometric model based on remote sensing imagery inversion data of the Yangtze River Economic Belt (YREB), China, between 2000 and 2016. The results showed that 1) the annual value of PM₂.₅ was in the range of 23.49–37.67 μg/m³ with an inverted U-shaped change trend, and the PM₂.₅ distribution presented distinct spatial heterogeneity; 2) there was a strong local spatial dependence and dynamic PM₂.₅ growth process, and the spatial agglomeration of PM₂.₅ exhibited higher path-dependence and spatial locking characteristics; and 3) the endogenous interaction effect of PM₂.₅ was significant, where each 1% increase in the neighbouring PM₂.₅ levels caused the local PM₂.₅ to increase by at least 0.4%. Natural and anthropogenic factors directly and indirectly influenced the PM₂.₅ levels. Our results provide spatial decision references for coordinated trans-regional air pollution governance as well as support for further studies which can inform sustainable development strategies in the YREB.
اظهر المزيد [+] اقل [-]Spatial lag effect of aridity and nitrogen deposition on Scots pine (Pinus sylvestris L.) damage
2020
Samec, Pavel | Zapletal, Miloš | Lukes, Petr | Rotter, Pavel
Scots pine (Pinus sylvestris L.) is a widespread tolerant forest tree-species; however, its adaptability to environmental change differs among sites with various buffering capacity. In this study, we compared the spatial effects of aridity index (AI) and nitrogen deposition (ND) on biomass density in natural and man-made pine stands of differing soil fertility using geographically weighted multiple lag regression. Soil fertility was defined using soil series as zonal trophic (27.9%), acidic (48.2%), gleyed (15.2%) and as azonal exposed (2.5%), maple (2.4%), ash (0.8%), wet (2.1%) and peat (0.9%) under pine stands in the Czech Republic (Central Europe; 4290.5 km²; 130–1298 m a.s.l.). Annual AI and ND in every pine stand were estimated by intersection between raster and vector from 1 × 1 km grid for years 2000, 2003, 2007 and 2010 of severe non-specific forest damage spread. Biomass density was obtained from a MODIS 250 × 250 m raster using the enhanced vegetation index (EVI) for years 2000–2015, with a decrease in EVI indicating non-specific damage. Environmental change was assessed by comparing predictor values at EVI time t and t+λ. Non-specific damage was registered over 51.9% of total forest area. Less than 8.8% of damaged stands were natural and the rest (91.2%) of damaged stands were man-made. Pure pine stands were more damaged than mixed. The ND effect prevailed up to 2007, while AI dominated later. Temporal increasing ND effect under AI effectiveness led to the most significant pine stand damage in 2008 and 2014. Predictors from 2000 to 2007 afflicted 58.5% of non-specifically damaged stands at R² 0.09–0.76 (median 0.38), but from 2000 to 2010 afflicted 57.1% of the stands at R² 0.16–0.75 (median 0.40). The most damaged stands occurred on acidic sites. Mixed forest and sustainable management on natural sites seem as effective remediation reducing damage by ND.
اظهر المزيد [+] اقل [-]Comparison of land use regression and random forests models on estimating noise levels in five Canadian cities
2020
Liu, Ying | Goudreau, Sophie | Oiamo, Tor | Rainham, Daniel | Hatzopoulou, Marianne | Chen, Hong | Davies, Hugh | Tremblay, Mathieu | Johnson, James | Bockstael, Annelies | Leroux, Tony | Smargiassi, Audrey
Chronic exposure to environment noise is associated with sleep disturbance and cardiovascular diseases. Assessment of population exposed to environmental noise is limited by a lack of routine noise sampling and is critical for controlling exposure and mitigating adverse health effects. Land use regression (LUR) model is newly applied in estimating environmental exposures to noise. Machine-learning approaches offer opportunities to improve the noise estimations from LUR model. In this study, we employed random forests (RF) model to estimate environmental noise levels in five Canadian cities and compared noise estimations between RF and LUR models. A total of 729 measurements and 33 built environment-related variables were used to estimate spatial variation in environmental noise at the global (multi-city) and local (individual city) scales. Leave one out cross-validation suggested that noise estimates derived from the RF global model explained a greater proportion of variation (R2: RF = 0.58, LUR = 0.47) with lower root mean squared errors (RF = 4.44 dB(A), LUR = 4.99 dB(A)). The cross-validation also indicated the RF models had better general performance than the LUR models at the city scale. By applying the global models to estimate noise levels at the postal code level, we found noise levels were higher in Montreal and Longueuil than in other major Canadian cities.
اظهر المزيد [+] اقل [-]Exposure to both formaldehyde and high relative humidity exacerbates allergic asthma by activating the TRPV4-p38 MAPK pathway in Balb/c mice
2020
Duan, Jiufei | Xie, Jing | Deng, Ting | Xie, Xiaoman | Liu, Hong | Li, Baizhan | Chen, Mingqing
Some studies have indicated that formaldehyde, a ubiquitous environmental pollutant, can induce or aggravate allergic asthma. Epidemiological studies have also shown that the relative humidity indoors may be an independent and a key factor associated with the aggravation of allergic asthma. However, the synergy of humidity and formaldehyde on allergic asthma and the mechanism underlying this effect remain largely unknown. In this study, we aim to determine the effect of high relative humidity and/or formaldehyde exposure on allergic asthma and explore the underlying mechanisms. Male Balb/c mice were modeled with ovalbumin (OVA) and exposure to 0.5 mg/m3 formaldehyde and/or different relative humidity (60%/75%/90%). Histopathological changes, pulmonary function, Th1/Th2 balance, the status of mucus hypersecretion and the levels of inflammatory factors were detected to assess the exacerbation of allergic asthma. The levels of the transient receptor potential vanilloid 4 (TRPV4), calcium ion and the activation of p38 mitogen-activated protein kinases (p38 MAPK) were detected to explore the underlying mechanisms. The results showed that exposure to high relative humidity or to 0.5 mg/m3 formaldehyde alone had a slight, but not significant, affect on allergic asthma. However, the pathological response and airway hyperresponsiveness (AHR) were greatly aggravated by simultaneous exposure to 0.5 mg/m3 formaldehyde and 90% relative humidity. Blocking TRPV4or p38 MAPK using HC-067047 and SB203580 respectively, effectively alleviated the exacerbation of allergic asthma induced by this simultaneous exposure to formaldehyde and high relative humidity. The results show that when formaldehyde and high relative humidity are present this can enhance the activation of the TRPV4 ion channel in the lung leading to the aggravation of the p38 MAPK activation, resulting in the exacerbation of inflammation and hypersecretion of mucus in the airways.
اظهر المزيد [+] اقل [-]Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study
2020
Nehra, Sapna | Raghav, Sapna | Kumar, Dinesh
Excess fluoride concentration in drinking water is a global issue, as this has an adverse effect on human health. Several adsorbents have been synthesized from natural raw material to remove fluoride from water. Reported adsorbents have some problems with the leaching of metal ions, fewer adsorption sites, and low adsorption capacity. Therefore, to address this, an effective biomaterial derived from the Luffa cylindrica (LC), containing many active sites, was integrated with a nano form of cerium oxide to form a robust, biocompatible, highly porous, and reusable LC–Ce adsorbent. This synthesized biosorbent offers better interaction between the active sites of LC–Ce and fluoride, resulting in higher adsorption capacity. Several factors, influence the adsorption process, were studied by a central composite design (CCD) model of statistical analysis. Langmuir’s and Freundlich’s models well describe the adsorption and kinetics governed by the pseudo–second–order model. The maximum monolayer adsorption capacity was found to be 212 and 52.63 mg/g for LC–Ce and LC, respectively determined by the Langmuir model. Detailed XPS and FTIR analyses revealed the underlying mechanism of fluoride adsorption via ion-exchange, electrostatic interaction, H–bonding, and ion-pair formation. All the results indicate that LC–Ce could serve as a suitable adsorbent for efficient fluoride removal (80–85%).
اظهر المزيد [+] اقل [-]Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity
2020
AbdElgawad, Hamada | Zinta, Gaurav | Hamed, Badreldin A. | Selim, Samy | Beemster, Gerrit | Hozzein, Wael N. | Wadaan, Mohammed A.M. | Asard, Han | Abuelsoud, Walid
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
اظهر المزيد [+] اقل [-]Emergent contaminants in sediments and fishes from the Tamsui River (Taiwan): Their spatial-temporal distribution and risk to aquatic ecosystems and human health
2020
Lee, Ching-Chang | Hsieh, Chia-Yi | Chen, Colin S. | Tien, Chien-Jung
The occurrence of emergent contaminants, 24 polybrominated diphenyl ethers (PBDEs), di(2-ethylhexyl)phthalate (DEHP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP), bisphenol A (BPA) and nonylphenol (NP), was investigated in sediments and fishes collected from the Tamsui River system to determine the factors that influence their distribution and their risk to aquatic ecosystems and human health. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in sediments were 1–955, ND-23570, <50–411, <50–430, ND-80, ND-<50, ND-<50, 1–144, 3–19624 μg/kg dw, respectively. The spatial-temporal distribution trends of these compounds in sediments could be attributed to urbanization, industrial discharge and effluents from wastewater treatment plants. The PBDE congener distribution patterns (BDE-209 was the dominant congener) in sediments reflected the occurrence of debromination of BDE-209 and the elution of penta-BDE from the treated products. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in fish muscles were 2–66, 17–1046, <10–231, <10–66, <30, ND-<30, ND-<30, 0.4–7 and 3–440 μg/kg ww, respectively. The species-specific bioaccumulation of these compounds by fish was found and four species particularly showed high bioaccumulation potential. BDE-47 was the predominant BDE congener in fish muscles, suggesting high bioavailability and bioaccumulation of this compound. The results of biota–sediment accumulation factors showed that BDE-47, 99, 100, 153 and 154 had relatively high bioavailability and bioaccumulation potential for some fish species. The ecological risk assessment showed that the concentrations of BPA and NP in sediments were likely to have adverse effects on aquatic organisms (risk quotients > 1). The human health risk assessment according to hazard quotients (HQs) and carcinogenic risks (CRs) revealed no remarkable risk to human health through consumption of fish contaminated with BDE-47, 99, 100, 154, 209, DEHP, BPA and NP.
اظهر المزيد [+] اقل [-]