خيارات البحث
النتائج 1711 - 1720 من 3,207
Association of soil arsenic and nickel exposure with cancer mortality rates, a town-scale ecological study in Suzhou, China النص الكامل
2015
Chen, Kai | Liao, Qi Lin | Ma, Zong Wei | Jin, Yang | Hua, Ming | Bi, Jun | Huang, Lei
Heavy metals and arsenic are well-known carcinogens. However, few studies have examined whether soil heavy metals and arsenic concentrations associate with cancer in the general population. In this ecological study, we aimed to evaluate the association of heavy metals and arsenic in soil with cancer mortality rates during 2005–2010 in Suzhou, China, after controlling for education and smoking prevalence. In 2005, a total of 1683 soil samples with a sampling density of one sample every 4 km²were analyzed. Generalized linear model with a quasi-Poisson regression was applied to evaluate the association between town-scale cancer mortality rates and soil heavy metal concentrations. Results showed that soil arsenic exposure had a significant relationship with colon, gastric, kidney, lung, and nasopharyngeal cancer mortality rates and soil nickel exposure was significantly associated with liver and lung cancer. The associations of soil arsenic and nickel exposure with colon, gastric, kidney, and liver cancer in male were higher than those in female. The observed associations of soil arsenic and nickel with cancer mortality rates were less sensitive to alternative exposure metrics. Our findings would contribute to the understanding of the carcinogenic effect of soil arsenic and nickel exposure in general population.
اظهر المزيد [+] اقل [-]Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China النص الكامل
2015
Zhu, Q. D. | Sun, J. H. | Hua, G. F. | Wang, J. H. | Wang, H.
Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO₃-N) and ammonia nitrogen (NH₄-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.
اظهر المزيد [+] اقل [-]DDT and its metabolites are linked to increased risk of type 2 diabetes among Saudi adults: a cross-sectional study النص الكامل
2015
Al-Othman, AbdulAziz A. | Abd-Alrahman, Sherif H. | Al-Daghri, Nasser M.
Organochlorine (OC) pesticides have recently been associated with type 2 diabetes in several non-Asian general populations. As there is currently an epidemic of type 2 diabetes mellitus in Asia. The prevalence and incidence of diabetes is increasing rapidly worldwide including many Arab Gulf countries. According to a community-based national epidemiological health survey, the overall prevalence of diabetes mellitus in Saudi adults (age group of 30–50 years) is 23.7 %. A recent study by Al-Daghri et al. (BMC Med 9:76, 2011) reported that the prevalence of diabetes mellitus in the Kingdom of Saudi Arabia (KSA) is 31.6 %. We investigated the associations between OC pesticides and type 2 diabetes in Saudi Arabia using a simple, sensitive, rapid, and selective gas chromatography coupled with mass spectrometry (GC-MS) method that has been recently developed. A total of 280 Saudi adults (136 diabetes mellitus (DM) patients and 144 non-DM controls) were randomly selected from the Riyadh Cohort Study for inclusion. The diagnosis of diabetes was based on established diagnosis and medications taken. Blood dichlorodiphenyltrichloroethane (DDT) and its derivatives were quantified using GC-MS. Residues of DDT and its derivatives were analyzed in serum by means of gas chromatography with a mass spectrometry detector. Associations between DDT exposure and T2DM were analyzed by logistic regression. DDT and its derivatives and serum concentrations of DDT and its derivative DDE showed the strongest and most significant association to type 2 diabetes in both cross-sectional and prospective studies. Associations of DDT and its derivatives varied across different diabetes-related components of the metabolic syndrome. It positively and significantly associated with four of the five of these components especially elevated triacylglycerol, high fasting glucose, high blood pressure, and HOMA-IR but negatively and significantly with HDL. Possible biological mechanisms are discussed. This study confirms previous reports relating organochlorine pesticide (OCP) exposure to diabetes and suggests possible hormonal pathways deserving further exploration. The study will be one of the first to shed light on the associations of serum levels of total DDTs and DDT derivatives among the Saudi Arab ethnicity, and diabetes type 2 chronic noncommunicable diseases are highly prevalent.
اظهر المزيد [+] اقل [-]Dynamic water quality modelling and uncertainty analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River النص الكامل
2015
Akomeah, Eric | Chun, Kwok Pan | Lindenschmidt, Karl-Erich
The surface water quality of the upper South Saskatchewan River was modelled using Water Quality Analysis Simulation Program (WASP) 7.52. Model calibration and validation were based on samples taken from four long-term water quality stations during the period 2007–2009. Parametric sensitivities in winter and summer were examined using root mean square error (RMSE) and relative entropy. The calibration and validation results show good agreement between model prediction and observed data. The two sensitivity methods confirmed pronounced parametric sensitivity to model state variables in summer compared to winter. Of the 24 parameters examined, dissolved oxygen (DO) and ammonia (NH₃-N) are the most influenced variables in summer. Instream kinetic processes including nitrification, nutrient uptake by algae and algae respiration induce a higher sensitivity on DO in summer than in winter. Moreover, in summer, soluble reactive phosphorus (SRP) and chlorophyll-a (Chla) variables are more sensitive to algal processes (nutrient uptake and algae death). In winter however, there exists some degree of sensitivity of algal processes (algae respiration and nutrient uptake) to DO and NH₃-N. Results of this study provide information on the state of the river water quality which impacts Lake Diefenbaker and the need for additional continuous monitoring in the river. The results of the sensitivity analysis also provide guidance on most sensitive parameters and kinetic processes that affect eutrophication for preliminary surface water quality modelling studies in cold regions.
اظهر المزيد [+] اقل [-]Gene-modified embryonic stem cell test to characterize chemical risks النص الكامل
2015
Kitada, Kohei | Kizu, Akane | Teramura, Takeshi | Takehara, Toshiyuki | Hayashi, Masami | Tachibana, Daisuke | Wanibuchi, Hideki | Fukushima, Shōji | Koyama, Masayasu | Yoshida, Kayo | Morita, Takashi
A high-throughput test of cell growth inhibition was performed using mouse embryonic stem (ES) cells to assess chemical toxicities. We herein demonstrated using a 96-well culture plate approach and the MTT assay that this method was suitable for prioritization of chemicals for their cytotoxic properties. In order to categorize chemicals, we used p53 gene-modified mouse ES cells as well as wild-type ES cells. The p53 gene is a well-known tumor suppressor and controls programmed cell death (apoptosis) and cellular senescence that is triggered by DNA-damaging agents such as alkylating agents and radiation. In the present study, p53-deficient ES cells were found to be more resistant to a tumor initiator, diethylnitrosamine (DEN), than wild-type ES cells, suggesting the inhibition of apoptosis or senescence by a dysfunction in p53. Chromosome aberrations were more frequently detected in p53-deficient ES cells than in wild-type cells, indicating genomic instability due to the deletion of p53. Other tumor initiators, methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (NMU), did not reveal apparent differences in cytotoxicity between wild-type and p53-deficient ES cells. Thus, ES test system using gene-modified ES cells may be used to categorize chemicals by detecting their characteristic effects on apoptosis, genotoxic potentials as well as general cytotoxicity.
اظهر المزيد [+] اقل [-]Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? النص الكامل
2015
Bebianno, M. J. | Gonzalez-Rey, M. | Gomes, T. | Mattos, J. J. | Flores-Nunes, F. | Bainy, A. C. D.
Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? النص الكامل
2015
Bebianno, M. J. | Gonzalez-Rey, M. | Gomes, T. | Mattos, J. J. | Flores-Nunes, F. | Bainy, A. C. D.
Nanotechnology is a rapid field of development with the enhancement of the production of different types of nanoparticles (NPs) applied in several industrial and commercial applications which increase the risk of their presence in the aquatic environment. Ag NPs have a wide application in everyday life products. However, there is concern about the exposure effects on aquatic organisms to these NPs. Therefore, this study aims to assess gene transcription alterations in mussels Mytilus galloprovincialis gills exposed for 2 weeks to Ag NPs (42 ± 10 nm, 10 μg.L⁻¹). The genes were selected based on previous biomarkers and proteomic results and included superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), caspase 3/7-1 (CAS), cathepsin L (CATH), heat-shock protein 70 (HSP 70), cytochrome P450 4YA (CYP 4YA), the elongation factor (EF1), actin and α- tubulin. No significant changes in gene transcription profiles were observed after exposure of M. galloprovincialis to Ag NPs for 15 days. The lack of significant gene transcription responses is in light with previous results obtained for mussels exposed to these NPs and may be related to the fact that enzyme kinetics and relative abundance of proteins (increase of antioxidant enzymes and metalllothioneins (MTs) with the time of exposure) do not always directly reflect their relative mRNA levels. Nevertheless, their overall expression maintenance may signify that, at end of the exposure period (15 days), the transcription of the respective genes is no longer required, pointing out to a possible adaptation effect to nanoparticles or due to the levels of Ag NPs accumulated in this tissue at this exposure time. This study highlights that gene transcription application and role as an additional and/or alternative end point approach is important to understand the mode of action of these emergent contaminants in aquatic organisms. However, in future studies, the time window needs to be adjusted, as genes are likely to respond earlier to the nanoparticle exposure.
اظهر المزيد [+] اقل [-]Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? النص الكامل
2015
Bebianno, Maria João | Gonzalez-Rey, Maria | Gomes, Tânia | Mattos, J. J. | Flores-Nunes, F. | Bainy, A. C. D.
Nanotechnology is a rapid field of development with the enhancement of the production of different types of nanoparticles (NPs) applied in several industrial and commercial applications which increase the risk of their presence in the aquatic environment. Ag NPs have a wide application in everyday life products. However, there is concern about the exposure effects on aquatic organisms to these NPs. Therefore, this study aims to assess gene transcription alterations in mussels Mytilus galloprovincialis gills exposed for 2 weeks to Ag NPs (42 ± 10 nm, 10 μg.L(-1)). The genes were selected based on previous biomarkers and proteomic results and included superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), caspase 3/7-1 (CAS), cathepsin L (CATH), heat-shock protein 70 (HSP 70), cytochrome P450 4YA (CYP 4YA), the elongation factor (EF1), actin and α- tubulin. No significant changes in gene transcription profiles were observed after exposure of M. galloprovincialis to Ag NPs for 15 days. The lack of significant gene transcription responses is in light with previous results obtained for mussels exposed to these NPs and may be related to the fact that enzyme kinetics and relative abundance of proteins (increase of antioxidant enzymes and metalllothioneins (MTs) with the time of exposure) do not always directly reflect their relative mRNA levels. Nevertheless, their overall expression maintenance may signify that, at end of the exposure period (15 days), the transcription of the respective genes is no longer required, pointing out to a possible adaptation effect to nanoparticles or due to the levels of Ag NPs accumulated in this tissue at this exposure time. This study highlights that gene transcription application and role as an additional and/or alternative end point approach is important to understand the mode of action of these emergent contaminants in aquatic organisms. However, in future studies, the time window needs to be adjusted, as genes are likely to respond earlier to the nanoparticle exposure. | PhD Grant (SFRH/BD/41605/2007) | info:eu-repo/semantics/publishedVersion
اظهر المزيد [+] اقل [-]Morphoanatomical responses induced by excess iron in roots of two tolerant grass species النص الكامل
2015
de Araújo, Talita Oliveira | de Freitas-Silva, Larisse | Santana, Brenda Vila Nova | Kuki, Kacilda Naomi | Pereira, Eduardo Gusmão | Azevedo, Aristéa Alves | da Silva, Luzimar Campos
We aimed to verify whether morphoanatomic alterations occur in response to excess iron, in roots of Setaria parviflora and Paspallum urvillei (Poaceae), and to localize the presence of the sites of iron accumulation. Plants were subjected to 0.009, 1, 2, 4, and 7 mM Fe-EDTA in nutrient solution. Both species presented iron contents in the roots above the critical toxicity level. The presence of iron plaque on roots of the two species was confirmed, and it may have reduced iron absorption by the plants. Roots from the two species showed typical visual symptoms of stress by excess iron: change in color and mucilaginous and flaccid appearance. Anatomical damage was observed in both species: aerenchyma disruption, alterations in endodermal cells, and irregular shape of both vessel and sieve tube elements. The metal was histolocalized in the cortex and in protoxylem and metaxylem cell walls in both species, which suggests a detoxification strategy for the excess iron. Phenolic compounds were not histolocalized in roots. Microscopic analyses were therefore effective in evaluating the real damage caused by excess iron.
اظهر المزيد [+] اقل [-]Development of a sediment-contact test with rice for the assessment of sediment-bound pollutants النص الكامل
2015
Despite the key role of higher plants in aquatic ecosystems as functional and structural elements, sediment-contact tests with macrophytes are still scarce. Moreover, due to large differences in exposure routes for pollutants as well as in life cycles between the diverse taxa of macrophytes, sensitivities to pollutants vary between taxa. Therefore, the development of new test systems with aquatic macrophytes, in general, is favorable. This study proposes a protocol for a sediment-contact test with Oryza sativa and addresses the main question whether the rice plant is a suitable test organism for sediment toxicity testing with higher plants. As a first evaluation step, the variability and sensitivity of the test was investigated using spiked artificial sediments. Thus, according to the protocol, rice was exposed to arsenic-, cadmium-, chromium-, and nickel-spiked sediments. Additionally, it was investigated which classical endpoints for plant bioassays, such as root and shoot elongation, are suitable for this bioassay. As a second evaluation step, the test system was used for assessment of natural sediments. Thereupon, a sensitivity profile of the presented test protocol was analyzed in comparison to other plant-based test systems. Inhibition of root and shoot elongation turned out to be the most sensitive endpoints for single-substance testing in spiked artificial sediments. However, regarding testing of natural sediments, rice shoots responded more sensitive than rice roots. In conclusion, the rice plant clearly showed pollutant-induced effects on growth in sediments, and thus, it is likely a promising test organism to complement sediment-contact tests with higher plants.
اظهر المزيد [+] اقل [-]Floc properties and membrane fouling of polyferric silicate chloride and polyferric chloride: the role of polysilicic acid النص الكامل
2015
Dong, Hongyu | Gao, Baoyu | Yue, Qinyan | Sun, Shenglei | Wang, Yan | Li, Qian
Impact of polysilicic acid (pSi) in polyferric silicate chloride (PFSiC) on coagulation-ultrafiltration process was investigated in comparison with polyferric chloride (PFC). The Fe(III) species distribution in PFSiC and PFC was measured by a timed complexation spectroscopy method. Characteristics of flocs produced by PFSiC and PFC were studied using a laser diffraction particle sizing device. Moreover, membrane fouling was evaluated using a dead-end batch ultrafiltration unit under two operation modes, coagulation-ultrafiltration (C-UF) and coagulation-sedimentation-ultrafiltration (CSUF). The results indicated that PFSiC with various Si/Fe ratios had better turbidity removal efficiency but inferior organic matter removal. Flocs formed by PFSiC were larger than those by PFC. In case of PFSiC, floc size increased with Si/Fe ratio increasing. PFSiC with various Si/Fe ratios resulted in more compact and weaker flocs than PFC. Ultrafiltration experiments indicated that under C-UF mode, PFSiC with Si/Fe ratios of 0.07 and 0.10 presented better membrane performance than PFC. Under CSUF mode, addition of pSi could alleviate membrane fouling.
اظهر المزيد [+] اقل [-]Towards understanding the effects of additives on the vermicomposting of sewage sludge النص الكامل
2015
Xing, Meiyan | Lv, Baoyi | Zhao, Chunhui | Yang, Jian
This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.
اظهر المزيد [+] اقل [-]