خيارات البحث
النتائج 1711 - 1720 من 7,290
Analysis of pharmaceuticals, hormones and bacterial communities in a municipal wastewater treatment plant – Comparison of parallel full-scale membrane bioreactor and activated sludge systems النص الكامل
2022
Leiviskä, T. | Risteelä, S.
In this study, the occurrence of pharmaceuticals, hormones and bacterial community structures was studied at a wastewater treatment plant in Finland having two different parallel treatment lines: conventional activated sludge (CAS) treatment with a sedimentation stage, and a membrane bioreactor (MBR). Influent and effluents were sampled seven times over a period of one year. The bacterial communities of the influent samples showed a high degree of similarity, except for the February sample which had substantially lower diversity. There was significant fluctuation in the species richness and diversity of the effluent samples, although both effluents showed a similar trend. A marked decrease in diversity was observed in effluents collected between August and November. The initiation of nitrogen removal as a result of an increase in temperature could explain the changes in microbial community structures. In overall terms, suspended solids, bacteria and total organic matter (COD and BOD) were removed to a greater extent using the MBR, while higher Tot-N, Tot-P and nitrate removal rates were achieved using the CAS treatment. Estrone (E1) concentrations were also consistently at a lower level in the MBR effluents (<0.1–0.68 ng/l) compared to the CAS effluents (1.1–12 ng/l). Due to the high variation in the concentrations of pharmaceuticals, no clear superiority of either process could be demonstrated with certainty. The study highlights the importance of long-term sampling campaigns to detect variations effectively.
اظهر المزيد [+] اقل [-]Effects of the presence of triclocarban on the degradation and migration of co-occurring pesticides in soil النص الكامل
2022
Tei, Sei | Zhang, Chuntao | Jiang, Wenqi | Zhai, Wangjing | Gao, Jing | Wang, Peng
Triclocarban (TCC), a bactericide widely used in personal care products, is frequently detected in soil and surface water, which may affect the environmental behavior of other environmental pollutants by changing the community structure of environmental microorganisms. This work evaluated the effects of TCC on the degradation and migration of seven herbicides and five fungicides in soil under co-occurrence conditions. TCC significantly increased the persistence of the pesticides in soil, and this effect increased with TCC concentration. For example, the half-life of metolachlor, atrazine, metribuzin, and metamitron increased 44%, 38%, 153%, and 33%, respectively, with 10 mg/kg TCC and increased 60%–640% with 100 mg/kg TCC. After 90 days, the residue of the pesticides in soil treated with TCC was significantly elevated relative to the control. TCC treatment could also increase the potential leaching risk of the herbicides in the soil, as indicated by an increased Groundwater Ubiquity Score (GUS) index. The reduced abundance of soil bacteria by TCC might be an essential reason for the impacts on the environmental behavior of the pesticides. This study confirmed that TCC could slow down the degradation of pesticides in soil, increase their persistence and even affect the leaching behavior, thus influencing the risks of the pesticides to the environment.
اظهر المزيد [+] اقل [-]Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR النص الكامل
2022
Yu, Jing | Zhu, Hui | Shutes, B. (Brian) | Wang, Xinyi
The development of saline-alkali lands has contributed to the increasing discharge of alkaline salt-laden wastewater, which poses a threat to aquatic organisms. However, the comprehensive effect of alkaline salt on Microcystis aeruginosa, a harmful cyanobacterium, remains unclear. In this study, the growth, physiology, cell ultrastructure and production of microcystin-LR (MC-LR) in Microcystis aeruginosa exposed to four levels of alkaline salt stress were evaluated. The growth of Microcystis aeruginosa was stimulated at an electrical conductivity (EC) of 2.5 mS/cm compared to the control, as supported by the increased cell density, photosynthetic pigment and protein contents. Microcystis aeruginosa could tolerate a certain level of alkaline salt (i.e., EC of 5 mS/cm) via increasing photosynthetic pigment contents to protect cells from alkaline salt stress, but the antioxidant defence system and cell ultrastructure were not affected. When EC increased to 7.5 mS/cm, alkaline salt caused oxidative stress and toxicity in Microcystis aeruginosa, as evidenced by analysis of the integrated biomarker response (IBR). Furthermore, the photosynthetic pigment and protein contents decreased, and cell apoptosis associated with ultrastructural changes was observed. Therefore, we propose that EC of 7.5 mS/cm is a threshold for growth of Microcystis aeruginosa. Additionally, the intracellular MC-LR content was stimulated by alkaline salt, and the highest value was observed at EC of 2.5 mS/cm. The extracellular MC-LR content increased with the increasing alkaline salt concentration. When EC was 7.5 mS/cm, the extracellular MC-LR content was significantly higher than in the control and was associated with the upregulated mcyH gene. This study recommends that more attention should be paid to the risk of Microcystis aeruginosa bloom and microcystin-LR pollution in lakes located in salinization regions.
اظهر المزيد [+] اقل [-]Wildfires cause rapid changes to estuarine benthic habitat النص الكامل
2022
Barros, Thayanne L. | Bracewell, Sally A. | Mayer-Pinto, Mariana | Dafforn, Katherine A. | Simpson, Stuart L. | Farrell, Mark | Johnston, Emma L.
Estuaries are one of the most valuable biomes on earth. Although humans are highly dependent on these ecosystems, anthropogenic activities have impacted estuaries worldwide, altering their ecological functions and ability to provide a variety of important ecosystem services. Many anthropogenic stressors combine to affect the soft sedimentary habitats that dominate estuarine ecosystems. Now, due to climate change, estuaries and other marine areas might be increasingly exposed to the emerging threat of megafires. Here, by sampling estuaries before and after a megafire, we describe impacts of wildfires on estuarine benthic habitats and justify why megafires are a new and concerning threat to coastal ecosystems. We (1) show that wildfires change the fundamental characteristics of estuarine benthic habitat, (2) identify the factors (burnt intensity and proximity to water's edge) that influence the consequences of fires on estuaries, and (3) identify relevant indicators of wildfire impact: metals, nutrients, and pyrogenic carbon. We then discuss how fires can impact estuaries globally, regardless of local variability and differences in catchment. In the first empirical assessment of the impact of wildfires on estuarine condition, our results highlight indicators that may assist waterway managers to empirically detect wildfire impacts in estuaries and identify catchment factors that should be included in fire risk assessments for estuaries. Overall, this study highlights the importance of considering fire threats in current and future estuarine and coastal management.
اظهر المزيد [+] اقل [-]Per- and poly-fluoroalkyl substances in sediments from the water-level-fluctuation zone of the Three Gorges Reservoir, China: Contamination characteristics, source apportionment, and mass inventory and loadings النص الكامل
2022
Zhang, Siyuan | Li, Xingquan | He, Ding | Zhang, Daijun | Zhao, Zhen | Si, Hongtao | Wang, Fengwen
Sixteen paired surface sediment samples (0–5 cm, n = 32) covering upstream to downstream of water-level-fluctuation zone of Three Gorges Reservoir, China were collected in March 2018 (following six months of submergence) and September 2018 (after six months of exposure). Seventeen per- and poly-fluoroalkyl substances (PFASs) were quantified to evaluate contamination characteristics, apportion source categories and estimate mass inventory and loadings. The concentration of ΣPFASs ranged from 0.26 to 0.82 ng·g⁻¹ at high water-level (HWL) and 0.46–1.53 ng·g⁻¹ at low water-level (LWL). Perfluorooctanoic acid (PFOA, mean: 0.32 ng·g⁻¹) and perfluorooctane sulfonate (PFOS, mean: 0.12 ng·g⁻¹) dominated, accounting 44.9% and 16.3% of the total PFASs, respectively. The distribution of PFASs was more influenced by anthropogenic activities than physicochemical parameters of the sediments. Positive matrix factorization (PMF) identified PFOA-based products was the major sources (40.1% and 38.6%, respectively). Besides, the direct sources of PFOA-, PFOS-, PFNA-and PFBA-based products played the predominant role, while the indirect degradation of precursors contributed relatively little. The sediment (0–5 cm) mass inventory of PFASs at LWL (57.5 kg) was higher than HWL (39.3 kg). The annual mass loadings of the total PFASs, PFOA, PFOS, perfluoroundecanoic acid (PFUdA) and perfluorononanoic acid (PFNA) from the upstream to the middle-lower reaches of Yangtze River were 27.4 kg, 11.1 kg, 4.63 kg, 2.89 kg and 2.57 kg, respectively. This study could provide the basic datasets of PFASs in surface sediments of the TGR, and also indicate an important transport of PFASs from upstream to the lower reaches, which should be further studied as well.
اظهر المزيد [+] اقل [-]Environmental migration effects of air pollution: Micro-level evidence from China النص الكامل
2022
Guo, Qingbin | Wang, Yong | Zhang, Yao | Yi, Ming | Zhang, Tian
The willingness of migrating due to air pollution is widespread in China. However, there is a lack of direct evidence and discussion regarding whether this willingness has been translated into action. In this study, PM2.5 concentrations were used to represent air pollution in each city and were compared with individual migration data from the China Labor-force Dynamics Survey (CLDS) to examine population migration effects caused by air pollution. This study showed that (1) Population migration between Chinese cities shows sensitivity to air pollution, and air pollution increases the probability of moving away for local population. This finding is held under multiple robustness and endogeneity tests. (2) Population migration effects caused by air pollution were more pronounced among women, middle-aged people, those with lower educational levels, from agricultural households, Han Chinese groups, and populations in southern cities. (3) The use of individual self-rated health data verified that physical health is an important channel through which individual migration decisions are influenced by air pollution, the older an individual, the more his or her health was affected. In light of these findings, this study led to conclusions regarding targeted policy recommendations in terms of talent clustering, social equity, and demographic balance.
اظهر المزيد [+] اقل [-]Health impacts of artificial turf: Toxicity studies, challenges, and future directions النص الكامل
2022
Murphy, Maire | Warner, Genoa R.
Many communities around the country are undergoing contentious battles over the installation of artificial turf. Opponents are concerned about exposure to hazardous chemicals leaching from the crumb rubber cushioning fill made of recycled tires, the plastic carpet, and other synthetic components. Numerous studies have shown that chemicals identified in artificial turf, including polycyclic aromatic hydrocarbons (PAHs), phthalates, and per- and polyfluoroalkyl substances (PFAS), are known carcinogens, neurotoxicants, mutagens, and endocrine disruptors. However, few studies have looked directly at health outcomes of exposure to these chemicals in the context of artificial turf. Ecotoxicology studies in invertebrates exposed to crumb rubber have identified risks to organisms whose habitats have been contaminated by artificial turf. Chicken eggs injected with crumb rubber leachate also showed impaired development and endocrine disruption. The only human epidemiology studies conducted related to artificial turf have been highly limited in design, focusing on cancer incidence. In addition, government agencies have begun their own risk assessment studies to aid community decisions. Additional studies in in vitro and in vivo translational models, ecotoxicological systems, and human epidemiology are strongly needed to consider exposure from both field use and runoff, components other than crumb rubber, sensitive windows of development, and additional physiological endpoints. Identification of potential health effects from exposures due to spending time at artificial turf fields and adjacent environments that may be contaminated by runoff will aid in risk assessment and community decision making on the use of artificial turf.
اظهر المزيد [+] اقل [-]Rapid narrowing of the urban–suburban gap in air pollutant concentrations in Beijing from 2014 to 2019 النص الكامل
2022
Li, Xue | Zhang, Fang | Ren, Jingye | Han, Wenchao | Zheng, Bo | Liu, Jieyao | Chen, Lu | Jiang, Sihui
Understanding the spatial patterns of atmospheric pollutants in urban and suburban areas is important for evaluating their effects on regional air quality, climate, and human health. The analyses of pollutant monitoring data of the China National Environmental Monitoring Center revealed that the differences in the concentrations of ambient O₃, PM₂.₅, NO₂, SO₂, and CO between urban and suburban areas rapidly decreased from 2014 to 2019 in Beijing. Considering the negligible urbanization and interannual meteorological changes during the study period, the results reveal a quick response of the urban-to-suburban difference (ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ) in the ambient pollutants concentrations to emission reduction measures implemented in China in 2013. However, owing to the efficient O₃ formation in summer in urban areas in recent years, we observed a more rapid decrease in the ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ in O₃ concentration in summer (64.8%) than in winter (16.1%). In addition, the ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ in daytime summer O₃ changed from negative in 2014–2018 to positive in 2019, indicating that the daytime O₃ concentration in urban areas exceeded that in suburban areas. Furthermore, instantaneous changes in ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ in air pollutants were more sensitive to meteorological variations in 2014 than in 2019. The results indicate a less significant role of regional air mass transport in the spatial variability of pollutants under a future scenario of strong emission reduction in China.
اظهر المزيد [+] اقل [-]Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem النص الكامل
2022
Afzal, Shadma | Singh, Nand K.
In this study, we assessed the impact of zinc oxide (ZnO) and iron oxide (FeO) (<36 nm) nanoparticles (NPs) as well as their sulphate salt (bulk) counterpart (0, 25, 100 mg/kg) on rice growth and seed quality as well as the microbial community in the rhizosphere environment of rice. During the rice growing season 2021–22, all experiments were conducted in a greenhouse (temperature: day 30 °C; night 20 °C; relative humidity: 70%; light period: 16 h/8 h, day/night) in rice field soil. Results showed that low concentrations of FeO and ZnO NPs (25 mg/kg) promoted rice growth (height (29%, 16%), pigment content (2%, 3%)) and grain quality parameters such as grains per spike (8%, 9%), dry weight of grains (12%, 14%) respectively. As compared to the control group, the Zn (2%) and Fe (5%) accumulations at their respective low concentrations of NP treatments showed stimulation. Interestingly, our results showed that at low concentration of both the NPs the soil microbes had more diversity and richness than those in the bulk treated and control soil group. Although a number of phyla were affected by the presence of NPs, the strongest effects were observed for change in the abundance of the three phyla for Proteobacteria, Actinobacteria, and Planctomycetes. The rhizosphere environment was notably enriched with potential streptomycin producers, carbon and nitrogen fixers, and lignin degraders with regard to functional groups of microorganisms. However, microbial communities mainly responsible for chitin degradation, ammonia oxidation, and nitrite reduction were found to be decreased. The results from this study highlight significant changes in several plant-based endpoints, as well as the rhizosphere soil microorganisms. It further adds information to our understanding of the nanoscale-specific impacts of important micronutrient oxides on both rice and its associated soil microbiome.
اظهر المزيد [+] اقل [-]Exploring the impact of biochar supplement on the dynamics of antibiotic resistant fungi during pig manure composting النص الكامل
2022
Zhou, Yuwen | Zhang, Zengqiang | Awasthi, Mukesh Kumar
The purpose of this study was to investigate antibiotic resistant fungal (ARF) communities in pig manure (PM) composting employing two different biochar (coconut shell-CSB and bamboo biochar-BB) as amendment. Three treatments (Control, 10% CSB and 10% BB) were designed and indicated with T1 to T3. Experimental results declared that the fungal abundance significantly reduced among the both biochar applied treatments but three dominant phyla Ascomycota, Basidiomycota and Mucoromycota were still relatively greater abundance present. There were significant differences (p < 0.05) in the relative abundance and diversity of fungi among all three treatments. Interestingly, biochar addition regulated the overall fungal community in final compost. Compared with the control group, the abundance of fungi was positively mobilized, and especially CSB showed a better effect. Conclusively, biochar has potential to inhibit and reduce the ARGs population and mobility in compost. Thus, these findings offer new insight to understand the succession of ARFs during PM composting.
اظهر المزيد [+] اقل [-]