خيارات البحث
النتائج 1751 - 1760 من 7,921
On the prediction of settling velocity for plastic particles of different shapes
2021
Francalanci, Simona | Paris, Enio | Solari, Luca
Transport processes of plastic particles in freshwater and marine environments are one of the relevant advances of knowledge in predicting the fate of plastic in the environment. Here, we investigated the effect of different shapes on the settling velocity, finding a representative reference diameter which encompasses three-dimensional shapes like pellets or spherules, two-dimensional shapes like fragments or disks, and one-dimensional shapes like filaments or fibers. The new method is able to predict the settling velocity of plastic and natural particles given the representative size and the Corey shape factor coefficient, over the entire range of viscous to turbulent flow regime.The calibration of the method with experimental data, and the validation with an independent dataset, support its application in a wide range of hydraulic conditions.
اظهر المزيد [+] اقل [-]Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh
2021
Sherris, Allison R. | Begum, Bilkis A. | Baiocchi, Michael | Goswami, Doli | Hopke, Philip K. | Brooks, W Abdullah | Luby, Stephen P.
Air pollution in the form of fine particulate matter (PM₂.₅) has been linked to adverse respiratory outcomes in children. However, the magnitude of this association in South Asia and sources of PM₂.₅ that drive adverse health effects are largely unknown. This study evaluates associations between short-term variation in ambient PM₂.₅ and incidence of pneumonia and upper respiratory infections among children in Dhaka, Bangladesh. We also perform an exploratory analysis of the PM₂.₅ source composition that is most strongly associated with health endpoints. We leveraged data from health surveillance of children less than five years of age between 2005 and 2014 in Kamalapur, Bangladesh, including daily physician-confirmed diagnoses of pneumonia and upper respiratory infection. Twice-weekly source-apportioned ambient PM₂.₅ measurements were obtained for the same period, and Poisson regression adjusted for time-varying covariates was used to estimate lagged associations between ambient PM₂.₅ and respiratory infection. We use complementary matching and stratification approaches to evaluate whether these associations vary across PM₂.₅ source composition. Total PM₂.₅ mass was associated with a modest increase in incidence of pneumonia, with a peak effect size two days after exposure (rate ratio = 1.032; 95% confidence interval = 1.008–1.056). We did not identify a significant association between PM₂.₅ and upper respiratory infection. Stratified and matching analyses suggested this association was stronger among days when ambient PM₂.₅ had a higher mass percent associated with brick kiln and fugitive lead emissions.: This study suggests that elevated ambient PM₂.₅ contributes to increased incidence of child pneumonia in urban Dhaka, and that this relationship varies among days with different source composition of PM₂.₅.
اظهر المزيد [+] اقل [-]A novel algorithm to determine the scattering coefficient of ambient organic aerosols
2021
Zhu, Wenfei | Guo, Song | Lou, Shengrong | Wang, Hui | Yu, Ying | Xu, Weizhao | Liu, Yucun | Cheng, Zhen | Huang, Xiaofeng | He, Lingyan | Zeng, Limin | Chen, Shiyi | Hu, Min
In the present work, we propose a novel algorithm to determine the scattering coefficient of OA by evaluating the relationships of the MSEs for primary organic aerosol (POA) and secondary organic aerosol (SOA) with their mass concentrations at three distinct sites, i.e. an urban site, a rural site, and a background site in China. Our results showed that the MSEs for POA and SOA increased rapidly as a function of mass concentration in low mass loading. While the increasing rate declined after a threshold of mass loading of 50 μg/m³ for POA, and 15 μg/m³ for SOA, respectively. The dry scattering coefficients of submicron particles (PM₁) were reconstructed based on the algorithm for POA and SOA scattering coefficient and further verified by using multi-site data. The calculated dry scattering coefficients using our reconstructing algorithm have good consistency with the measured ones, with the high correlation and small deviation in Shanghai (R² = 0.98; deviations: 2.9%) and Dezhou (R² = 0.90; deviations: 4.7%), indicating that our algorithms for OA and PM₁ are applicable to predict the scattering coefficient of OA and Submicron particle (PM₁) in China.
اظهر المزيد [+] اقل [-]Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning
2021
Yu, Zhenzhen | Liu, Enfeng | Lin, Qi | Zhang, Enlou | Yang, Fen | Wei, Chaoyang | Shen, Ji
Total concentration and chemical partitioning of heavy metals are commonly used in environmental quality assessment; however, their comparability and comprehensive application are far less discussed. Herein, bioavailability, pollution and eco-risk of As, Cd, Cr, Cu, Ni, Pb and Zn in surface sediments of Erhai Lake were evaluated referring to multiple indices following the experimental methods of complete digestion, optimized Community Bureau of Reference (BCR) and 1.0 M HCl extractions. Results of bioavailability for most metals were similar and comparable from BCR and HCl extractions. While bioavailable concentrations of Cd and Pb from HCl extraction were significantly (p < 0.01) lower than those from BCR extraction, indicating BCR extraction is more efficient. Results of enrichment factor (EF) and concentration enrichment ratio (CER) suggested that Cd was the highest polluted element followed by As, Pb and Zn, whereas Cr, Cu and Ni were mainly natural in origin. Similar concentrations of anthropogenic As from EF and CER assessments indicated anthropogenic As mainly existed in bioavailable form. However, anthropogenic Cd, Pb and Zn existed in both bioavailable and residue forms, resulting in the underestimation of anthropogenic metals by the CER assessment. The sediment quality guidelines (SQGs), potential ecological risk index (Er) and risk assessment code (RAC) showed inconsistent eco-risks for each of the metals except Cd. Combining pollution level and chemical partitioning with SQGs, Er and RAC assessments, high eco-risk of Cd, moderate eco-risk of As and Pb, and low eco-risk of Cr, Cu, Ni and Zn were graded. Our study highlights the limitation of single index and the necessity of integrating multiple indices following total concentration and chemical partitioning in metal pollution and eco-risk assessments.
اظهر المزيد [+] اقل [-]Microplastic pollution in sophisticated urban river systems: Combined influence of land-use types and physicochemical characteristics
2021
Wang, Ting | Wang, Jialin | Lei, Qi | Zhao, Yaning | Wang, Liqing | Wang, Xianyun | Zhang, Wei
In the past decades, research on water pollution microplastics (MPs) has intensified tremendously. However, the relationship between MPs and environmental factors in urban river networks is under researched. Our study selected 65 sampling sites from a sophisticated urban river network system in Shanghai Municipality, China. Here, the combined influence of land-use types, river width, and water quality parameters to explore MPs distribution patterns. We found that MPs abundance ranged from 0.7 to 24.3 items/L, and the spatial difference in abundance was significant at a limited number of sampling sites. Fibrous MPs were the most abundant MPs in the river system. 72.7% of MPs <3 mm. Of the ten polymers detected, polypropylene and polyethylene terephthalate were predominant. In addition, cotton fiber was the main non-plastic component found in the samples. Moreover, land-use types showed no significant impact on MPs in the buffer zone of the sampling sites. However, point source pollution may cause an abnormal increase in MPs abundance. Through redundant analysis, we found that the phytoplankton abundance (e.g., chlorophyll-a) was influenced by MPs shape, while the river width influence MPs size. Construction activities were identified as the leading point source of pollution for the abnormal increase in local MPs pollution. Our results will inform on MPs distribution patterns in the super-metropolis river system.
اظهر المزيد [+] اقل [-]Associations of serum phthalate metabolites with thyroid hormones in GraMo cohort, Southern Spain
2021
Donat-Vargas, Carolina | Perez-Carrascosa, Francisco | Gomez-Peña, Celia | Mustieles, Vicente | Salcedo-Bellido, Inmaculada | Frederiksen, Hanne | Åkesson, Agneta | Arrebola, Juan Pedro
The general population is continuously exposed to phthalates via various consumer products. Epidemiological research relating phthalate exposure to thyroid function during non-developmental periods is limited. This study aimed to investigate the associations between specific serum phthalate metabolites and indicators of thyroid function in adults. We measured 10 serum phthalate metabolites and thyroid hormones – total triiodothyronine (TT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) – in a subsample of 207 adults from the GraMo cohort. This subsample was made up of men and women (in equal proportions) of middle age (49 ± 17 years) and from Southern Spain (province of Granada). Data on age, sex, body mass index, residence area, tobacco use, alcohol consumption and attained education were obtained from a questionnaire. Phthalate metabolites were log-transformed and categorized into tertiles. Cross-sectional associations of each metabolite with thyroid hormones were analyzed using multivariable-adjusted linear regression models. The mixture effect of metabolite phthalates was assessed using weighted quantile sum regression. After multivariable-adjustment, the following phthalate metabolites were significantly associated with TT3 in a dose-response manner: MMP (β = 0.90: 95% confidence interval 0.68,1.12), MEP (β = 0.67: 0.44, 0.90), MiBP (β = 0.49: 0.21, 0.77), MiDP (β = 0.27: 0.03, 0.52), MBzP (β = 0.51: 0.28, 0.73), MEHP (β = −0.59: −0.82, −0.35) and MiNP (β = -0.43: −0.71, −0.14), when comparing highest vs. lowest exposed. The sum of all metabolites was also linked to FT4 levels. No significant associations were observed for TSH except for MiNP. Although phthalate metabolites with different molecular weight showed opposite associations, overall metabolite concentrations seem to associate with increased TT3 and FT4 serum levels. The cross-sectional nature of this analysis limits causal inference.
اظهر المزيد [+] اقل [-]A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity
2021
Bavani, Thirugnanam | Madhavan, Jagannathan | Prasad, Saradh | AlSalhi, Mohamad S. | AlJaafreh, Mamduh J.
Herein, an efficient visible-light-driven BiFeO₃/AgVO₃ nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO₃/AgVO₃ nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO₃/AgVO₃ nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO₃/AgVO₃ nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO₃. The lower PL intensity of 3%-BiFeO₃/AgVO₃ nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO₃/AgVO₃ nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O₂– radicals in the degradation over BiFeO₃/AgVO₃ nanocomposite.
اظهر المزيد [+] اقل [-]A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects
2021
Liu, Yu | Wang, Ping | Gojenko, Boris | Yu, Jingjie | Wei, Lezhang | Luo, Dinggui | Xiao, Tangfu
Central Asia is one of many regions worldwide that face severe water shortages; nevertheless, water pollution in this region exacerbates the existing water stress and increases the risk of regional water conflicts. In this study, we perform an extensive literature review, and the data show that water pollution in Central Asia is closely linked to human activities. Within the Asian Gold Belt, water pollution is influenced mainly by mining, and the predominant pollutants are heavy metals and radionuclides. However, in the irrigated areas along the middle and lower reaches of inland rivers (e.g., the Amu Darya and Syr Darya), water pollution is strongly associated with agriculture. Hence, irrigated areas are characterized by high concentrations of ammonia, nitrogen, and phosphorus. In addition, the salinities of rivers and groundwater in the middle and lower reaches of inland rivers generally increase along the flow path due to high rates of evaporation. Soil salinization and frequent salt dust storms in the Aral Sea basin further increase the pollution of surface water bodies. Ultimately, the pollution of surface water and groundwater poses risks to human health and deteriorates the ecological environment. To prevent further water pollution, joint monitoring of the surface water and groundwater quantity and quality throughout Central Asia must be implemented immediately.
اظهر المزيد [+] اقل [-]Assessment of micropollutants toxicity by using a modified Saccharomyces cerevisiae model
2021
Berrou, Kevin | Roig, Benoit | Cadiere, Axelle
Environment can be affected by a variety of micropollutants. In this paper, we develop a system to assess the toxicity on an environmental sample, based on the expression of a nanoluciferase under the control of the STB5 promotor in a yeast. The STB5 gene encodes for a transcription factor involved in a pleiotropic drug resistance and in the oxidative stress response. The response of the modified yeast was assessed using 42 micropollutants belonging to different families (antibiotics, pain killers, hormones, plasticizers, pesticides, etc.). Among them, 26 induced an increase of the bioluminescence for concentration ranges from pg.L⁻¹ to ng.L⁻¹. Surprisingly, for concentrations higher than 100 ng.L⁻¹, no response can be observed, suggesting that other mechanisms are involved when the stress increases. Analyzing the different responses obtained, we highlighted six nonmonotonic types of responses. The type of response seems to be independent of the properties of the compounds (polarity, toxicology, molecular weight) and of their family. In conclusion, we highlighted that a cellular response exists for very low exposition to environmental concentration of micropollutants and that it was necessary to explore the cellular mechanisms involved at very low concentration to provide a better risk assessment.
اظهر المزيد [+] اقل [-]Interfacial interaction between benzo[a]pyrene and pulmonary surfactant: Adverse effects on lung health
2021
Cao, Yan | Zhao, Qun | Geng, Yingxue | Li, Yingjie | Huang, Jianhong | Tian, Senlin | Ning, Ping
Inhaled polycyclic aromatic hydrocarbons (PAHs) can directly interact with the lung surfactant (PS) lining of alveoli, thereby affecting the normal physiological functions of PS, which is a serious threat to lung health. In spite of the extensive study of benzo[a]pyrene (BaP, a representative of PAHs), its potential biophysical influence on the natural PS is still largely unknown. In this study, the interfacial interaction between PS (extracted from porcine lungs) and BaP is investigated in vitro. The results showed that the surface tension, phase behavior, and interfacial structure of the PS monolayers were obviously altered in the presence of BaP. A solubilization test manifested that PS and its major components (dipalmitoyl phosphatidylcholine, DPPC; bovine serum albumin, BSA) could in turn accelerate the dissolution of BaP, which followed the order: PS > DPPC > BSA, and mixed phospholipids were significantly responsible for the solubilization of BaP by PS. In addition, solubilization of BaP also enhanced the consumption of hydroxyl radicals (·OH) in the simulated lung fluid, which could disturb the balance between oxidation and antioxidation.
اظهر المزيد [+] اقل [-]