خيارات البحث
النتائج 1771 - 1780 من 3,201
Oil spill effects on macrofaunal communities and bioturbation of pristine marine sediments (Caleta Valdés, Patagonia, Argentina): experimental evidence of low resistance capacities of benthic systems without history of pollution
2015
Ferrando, Agustina | Gonzalez, Emilia | Franco, Marcos | Commendatore, Marta | Nievas, Marina | Militon, Cécile | Stora, Georges | Gilbert, Franck | Esteves, José Luis | Cuny, Philippe
The Patagonian coast is characterized by the existence of pristine ecosystems which may be particularly sensitive to oil contamination. In this study, a simulated oil spill at acute and chronic input levels was carried out to assess the effects of contamination on the macrobenthic community structure and the bioturbation activity of sediments sampled in Caleta Valdés creek. Superficial sediments were either noncontaminated or contaminated by Escalante crude oil and incubated in the laboratory for 30 days. Oil contamination induced adverse effects on macrobenthic community at both concentrations with, for the highest concentration, a marked decrease of approximately 40 and 55 % of density and specific richness, respectively. Besides the disappearance of sensitive species, some other species like Oligochaeta sp. 1, Paranebalia sp., and Ostracoda sp. 2 species have a higher resistance to oil contamination. Sediment reworking activity was also affected by oil addition. At the highest level of contamination, nearly no activity was observed due to the high mortality of macroorganisms. The results strongly suggest that an oil spill in this protected marine area with no previous history of contamination would have a deep impact on the non-adapted macrobenthic community.
اظهر المزيد [+] اقل [-]A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry
2015
Terzopoulou, Evangelia | Voutsa, Dimitra | Kaklamanos, George
A multi-residue method, based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), has been developed for the determination of 70 organic micropollutants from various chemical classes (organochlorinated, organophosphorous, triazines, carbamate and urea, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals, phenols, etc.) in surface waters. A single-step SPE extraction using OASIS HLB cartridges was employed for the recovery of target micropollutants. The method has been validated according to monitoring performance criteria of the Water Framework Directive, taking into account the approved guidelines on quality assurance and quality control. The recoveries ranged from 60 to 110 %, the coefficient of variation from 0.84 to 27.4 %, and the uncertainty from 6 to 37 %. The LOD varied from 6.0 to 40 ng/L. The limits of quantification for the priority pollutants anthracene, alachlor, atrazine, benzo(a)pyrene, chlorfenvinphos, diuron, isoproturon, nonylphenol, simazine, and terbutryn fulfill the criterion of <30 % of the relevant environmental standards. The method was employed to investigate the water quality in the basin of a transboundary river, Strymonas, in NE Greece during three sampling campaigns conducted in the year 2013. Thirty-nine compounds were detected in the river water. Metolachlor, diuron, isoproturon, salicylic acid, chlorfenvinphos, 1,2-benzanthracene, pyrene, diflubenzuron, and carbaryl exhibited the highest detection frequencies.
اظهر المزيد [+] اقل [-]Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China
2015
Che, Huizheng | Xia, Xiangao | Zhu, Jun | Wang, Hong | Wang, Yaqiang | Sun, Junying | Zhang, Xiaoye | Shi, Guangyu
In January 2013, several serious haze pollution events happened in North China. Cimel sunphotometer measurements at an urban site of Beijing (Chinese Academy of Meteorological Sciences—CAMS) from 1 to 30 January 2013 were used to investigate the detailed variation of aerosol optical properties. It was found that Angstrom exponents were mostly larger than 0.80 when aerosol optical depth values are higher than 0.60 at the urban region of Beijing during January 2013. The aerosol optical depth (AOD) at the urban region of Beijing can remain steady at approximately 0.40 before haze happening and then increased sharply to more than 1.50 at 500 nm with the onset of haze, which suggests that the fine-mode AOD is a factor of 20 of the coarse-mode AOD during a serious haze pollution event. The single scattering albedo was approximately 0.90 ± 0.03 at 440, 675, 870 and 1,020 nm during the haze pollution period. The single scattering albedo at 440 nm as a function of the fine-mode fraction was relatively consistent, but it was highly variable at 675, 870 and 1,020 nm. Except on January 12 and 18, all the fine-mode particle volumes were larger than those of coarse particles, which suggests that fine particles from anthropogenic activities made up most of the haze. Aerosol type classification analysis showed that the dominant aerosol types can be classified as both “mixed” and “urban/industrial (U/I) and biomass burning (BB)” categories during the heavy haze period of Beijing in January of 2013. The mixed category occurrence was about 31 %, while the U/I and BB was about 69 %.
اظهر المزيد [+] اقل [-]Biological activity of the metal-rich post-flotation tailings at an abandoned mine tailings pond (four decades after experimental afforestation)
2015
Feketeová, Zuzana | Hulejová Sládkovičová, Veronika | Mangová, Barbara | Šimkovic, Ivan
In the spring 2012, post-flotation tailings of the inactive impoundment Lintich (Slovakia) were sampled. In the impoundment sediment and also in its surrounding, we detected concentration of Pb, Zn, Cd, Cu, and Ba exceeding limiting values. We detected low values of the microbial biomass carbon and microbial activity in the impoundment sediment (LiS) and its dam (DAM) along with potential respiration stayed relatively low and therefore also substrate availability index and metabolic quotient (qCO₂) were higher in the control sample (REF) than in the LiS and the DAM. The low qCO₂ level indicates that microbial community, despite of dangerously high levels of heavy metals in sediment, is still able to sufficiently utilize sources of available organic carbon. Anyway, we could doubt function of the metabolic index as universal indicator of environment conditions, regarding the anthropogenic substrates. We confirmed changes in composition of the mite communities along gradient dam—impoundment. The percentage of eudominant, recendent, and subrecendent species increased at the expense of dominants and subdominants, all together with decreasing diversity and equitability of the community. We identified species Chamobates borealis, Carabodes rugosior, Metabelba propexa, and Pergalumna nervosa with negative respond under the heavy metal stress. Species Adoristes ovatus was indifferent and Dissorhina sp., Hafenrefferia gilvipes, and Oppiella nova prospered under the loaded conditions. Forty years after experimental afforestation, we expect specific community of actively surviving microorganisms and Oribatida species detected in the DAM are usual in the greatly degraded habitats or on sites in the early succession.
اظهر المزيد [+] اقل [-]Sorption of sulfisoxazole onto soil—an insight into different influencing factors
2015
Maszkowska, Joanna | Białk-Bielińska, Anna | Mioduszewska, Katarzyna | Wagil, Marta | Kumirska, Jolanta | Stepnowski, Piotr
Although sulfonamides (SAs) are among the most commonly used veterinary drugs and their presence in the environment is well documented, knowledge of their fate and behavior in the soil environment is still limited, especially for sulfisoxazole (SSX) which is characterized by the lowest (among other SAs) pK ₐ value associated with acid-base equilibrium of sulfonamide group. Thus, this work was focused on determining the sorption potential of SSX onto natural soils differing in physicochemical properties. All the results were modeled using linear, Freundlich, Langmuir, Dubinin–Radushkevich, and Temkin sorption isotherms. The established sorption coefficients (K d) for SSX were quite low (from 0.27 to 0.95 L kg⁻¹), which indicated that this substance is highly mobile and has the potential to run off into surface waters and/or infiltrate ground water. The sorption data of SSX is well fitted to the Freundlich isotherm model (R ² > 0.968). Moreover, we assessed the sorption mechanism of these compounds in the edaphic environment with respect to organic matter (OM) content, pH, and ionic strength. To clarify the current state of knowledge, these factors were examined much more thoroughly than in previous investigations concerning other SAs. The wide range of ionic strength examined showed positive correlation of this factor and sorption of SAs. The results also yielded new insight into dependency of sorption of SAs on organic matter content in soil.
اظهر المزيد [+] اقل [-]Feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate-based Fenton treatment via parametric and kinetic studies
2015
Yap, Chiew Lin | Gan, Suyin | Ng, Hoon Kiat
This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H₂O₂ with H₂O₂/Fe²⁺ of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL f c = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (k ₛₗₒw) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H₂O₂ by EL addition in combination with reduced Fe²⁺ catalyst were able to slow the decomposition rate of H₂O₂ even at higher soil pH.
اظهر المزيد [+] اقل [-]Metal partitioning in plant–substrate–water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun
2015
Vamerali, T. | Bandiera, M. | Lucchini, P. | Mosca, G.
Soil amendment with chelating agents can increase metal uptake and translocation in biomass species through increased metal bioavailability together with possible increases in metal leaching. In this study, we assessed the efficiency and environmental risk of the fast-degradable [S,S]-EDDS. Cu, Pb and Zn uptake in pot-cultivated Brassica carinata A. Braun, residual substrate metal bioavailability and leaching were investigated after one cycle of EDDS-assisted phytoextraction in mixed metal-contaminated pyrite waste, which is characterised by high Fe content. The chelator was supplied at doses of 2.5 and 5 mmol EDDS kg⁻¹waste 1 week before harvest and 1 mmol EDDS kg⁻¹waste repeated five times at 5- and 10-day intervals during the growing cycle. Here we demonstrate that EDDS generally increases shoot metal concentrations—especially of Cu—but only seldom improves removals because of markedly impaired growth. Considerable phytotoxicity and Cu leaching occurred under repeated EDDS treatments, although environmental risks may also arise from the single, close-to-harvest applications as Cu bioavailability in waste at plant harvest still remained very high (up to +67 % at 5 mmol EDDS kg⁻¹vs. untreated controls). The residual bioavailability of Zn and Pb was instead generally reduced, perhaps due to shifts in cation exchange, whereas Fe mobility was not apparently affected. The amount of metals removed by plants represented a small fraction of the bioavailable pool (<1 %), and mobilised metals quickly reached deep layers in the substrate. We conclude that EDDS assistance can provide only some limited opportunities for improving phytoremediation of pyrite waste, major benefits being achieved by low doses to be traditionally applied shortly before harvest, with due attention to limiting groundwater pollution.
اظهر المزيد [+] اقل [-]Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse
2015
Lee, Eui-Jong | Kim, Yŏng-hun | Kim, Hyŏng-su | Jang, Am
Currently, there is a growing emphasis on wastewater reclamation and reuse all over the world due to restricted water resources. Among a variety of wastewater reuse technologies, the use of microfiltration membranes (MF) is one of the popular processes because it has the ability to successfully eliminate particulates and colloidal matters. However, successful fouling control is not easy because effluents from the activated sludge process still contain small particulates and colloidal matters such as extracellular polymeric substance (EPS) and soluble microbial products (SMP). On the other hand, microbubbles have advantageous properties compared to common bubbles, but there hasn’t been reporting of the use of microbubbles in physical cleaning instead of aeration. Encouraging results were obtained herein through the application of microbubbles for physical cleaning. In evaluation of the cleaning efficiency, the efficiency of microbubbles was observed to be twice as high as that of aeration, except during the course of the initial 30 min. Total organic carbon (TOC) concentration of the membrane tank after treatment with microbubbles was more than twice as high as that after aeration for physical cleaning. The membrane cleaned with microbubbles also had the smoothest surface, with a roughness of 42.5 nm. In addition, microbubbles were found to effectively remove EPS and make the structure of the gel layer loose. In particular, the microbubbles had the ability to remove proteins through the effect of pyrolytic decomposition. Therefore, in FT-IR spectra of the membrane surfaces taken before and after physical cleaning, while each treatment showed similar peak positions, the peak values of the membrane treated with microbubbles were the lowest. Through various analyses, it was confirmed that microbubbles can remove foulants on the gel layer in spite of their very low shear force. This means that microbubble cleaning has full potential for use as a physical cleaning method in the wastewater reclamation process.
اظهر المزيد [+] اقل [-]Malathion-induced hepatotoxicity in male Wistar rats: biochemical and histopathological studies
2015
Flehi-Slim, Imen | Chargui, Issam | Boughattas, Sonia | El Mabrouk, Aymen | Belaïd-Nouira, Yosra | Neffati, Fadwa | Najjar, Mohamed Fadhel | Haouas, Zohra | Cheikh, Hassen Ben
The increasing use of organophosphorus pesticides in the environment constitutes an ecotoxicological hazard especially for humans and non-target animals. Hereby, we analyzed the toxic effects of malathion on the histological structure of liver and biochemical parameters in male rats. Three groups received daily different amounts of malathion: 1/1000, 1/100, and 1/10 LD₅₀ for 30 days. The weights of treated rat’s liver have increased. Analyzed tissues showed centrilobular and sinusoidal congestion, hepatocyte hypertrophy, cellular vacuolization, anucleated hepatocytes, depletion of organelles affecting the majority of cells, and presence of necrotic foci into the hepatic parenchyma. Histological sections of the liver showed important hepatocyte glycogen storage. We conclude that malathion stimulates the filing of glycogen in a dose-dependent manner. Biochemical parameters showed that alanine transaminase (ALT), aspartate transaminase (AST), gamma glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels increased in the treated groups when the level of total protein decreased in intoxicated groups.
اظهر المزيد [+] اقل [-]Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination
2015
Sun, Kai | Liu, Juan | Gao, Yanzheng | Sheng, Yuehui | Kang, Fuxing | Waigi, Michael Gatheru
Plant organic contamination poses a serious threat to the safety of agricultural products and human health worldwide, and the association of endophytic bacteria with host plants may decrease organic pollutants in planta. In this study, we firstly determined the growth response and biofilm formation of endophytic Pseudomonas sp. Ph6-gfp, and then systematically evaluated the performance of different plant colonization methods (seed soaking (SS), root soaking (RS), leaf painting (LP)) for circumventing the risk of plant phenanthrene (PHE) contamination. After inoculation for 48 h, strain Ph6-gfp grew efficiently with PHE, oxalic acid, or malic acid as the sole sources of carbon and energy. Moreover, strain Ph6-gfp could form robust biofilms in LB medium. In greenhouse hydroponic experiments, strain Ph6-gfp could actively colonize inoculated plants internally, and plants colonized with Ph6-gfp showed a higher capacity for PHE removal. Compared with the Ph6-gfp-free treatment, the accumulations of PHE in Ph6-gfp-colonized plants via SS, RS, and LP were 20.1, 33.1, and 7.1 %, respectively, lower. Our results indicate that inoculating plants with Ph6-gfp could lower the risk of plant PHE contamination. RS was most efficient for improving PHE removal in whole plant bodies by increasing the cell numbers of Ph6-gfp in plant roots. The findings in this study provide an optimized method to strain Ph6-gfp reduce plant PAH residues, which may be applied to agricultural production in PAH-contaminated soil.
اظهر المزيد [+] اقل [-]