خيارات البحث
النتائج 1791 - 1800 من 6,535
3D printer waste, a new source of nanoplastic pollutants
2020
Rodríguez-Hernández, A.G. | Chiodoni, Angelica | Bocchini, Sergio | Vazquez-Duhalt, Rafael
Plastics pollution has been recognized as a serious environmental problem. Nevertheless, new plastic uses, and applications are still increasing. Among these new applications, three-dimensional resin printers have increased their use and popularity around the world showing a vertiginous annual-sales growth. However, this technology is also the origin of residues generation from the alcohol cleaning procedure at the end of each printing. This alcohol/resin mixture can originate unintentionally very small plastic particles that usually are not correctly disposed, and as consequence, could be easily released to the environment. In this work, the nanoparticle generation from 3D printer’s cleaning procedure and their physicochemical characterization is reported. Nano-sized plastic particles are easily formed when the resin residues are dissolved in alcohol and placed under UV radiation from sunlight. These nanoparticles can agglomerate in seawater showing an average hydrodynamic diameter around 1 μm, whereas the same nanoparticles remain dispersed in ultrapure water, showing a hydrodynamic diameter of ≈300 nm. The formed nanoparticles showed an isoelectric point close to pH 2, which can facilitate their interaction with other positively charged pollutants. Thus, these unexpected plastic nanoparticles can become an environmental issue and public health risk.
اظهر المزيد [+] اقل [-]Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce,Zr,La)O2 catalysts
2020
Wang, Ting | Zhou, Ren-xian
Rh/(Ce,Zr,La)O₂ (CZL) catalysts with different Ce/Zr molar ratios of 1:0, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8 and 0:1 were prepared. The relationship of microstructure, dynamic oxygen mobility and the redox properties with catalytic activity for HC, CO and NOₓ eliminations were investigated. The results demonstrate that CZL mixed oxide with Ce/Zr ratio of 1:1 exhibits the largest OSC values as 904.3 umol·g⁻¹ and structural defects. The increase of oxygen vacancies and structural defects would promote the interaction between Rh species and CZL mixed oxides, which further promotes the stabilization of RhOₓ particles and enhances the oxygen storage/release ability. Rh/CZLx catalysts with Ce/Zr molar ratio of 1:1–1:4 exhibit better catalytic activity and wider dynamic operation window due to their higher DOSC.
اظهر المزيد [+] اقل [-]A coupled ODE-diffusion modeling framework for removing organic contaminants in crops using a simple household method
2020
Li, Zijian
Organic contaminants are frequently detected in fresh crops and can cause severe damage to human health. To help control this risk, we introduce a diffusion-based model framework for estimating the removal efficiency for organic contaminants in fresh crops using a simple water soaking method. The framework was developed based on the diffusion coefficient of the organic contaminants, and its application indicates that the removal factor (RF) for organic contaminants has an inverse-exponential relationship with log Kₒw (Kₒw is the octanol-water partition coefficient), which thermodynamically restricts the removal efficiency for chemicals with large steady state log Kₒw. Additionally, the diffusion coefficient of the chemical in water affects the kinetic removal efficiency. For example, the RF simulated for glyphosate, which has a relatively high diffusion coefficient, is 0.592 (61.9% of the steady state RF) after soaking for 1 h, while the RF of lindane is 0.224, which is only 25.0% of the steady state RF. However, if a refreshing method is applied, the RF of lindane can be significantly improved even if more potatoes are used in the water bowl, and this has been demonstrated theoretically with the refreshing function. Model validation indicates that the macro properties of crops, e.g., the active area through which crop tissues interact with water, have a larger impact on the results than do the micro-properties of crops and the physiochemical properties of the organic contaminants. Comparison of our results with those of other studies shows that the simulated ranges for some pesticides compare well with experimental data collected using other household washing methods. However, for other pesticides such as HCB and DDT, the simulated results and current studies are inconsistent due to physical interactions between the water and crop tissues not considered in our model.
اظهر المزيد [+] اقل [-]Long-term willows phytoremediation treatment of soil contaminated by fly ash polycyclic aromatic hydrocarbons from straw combustion
2020
Košnář, Zdeněk | Mercl, Filip | Tlustoš, Pavel
A three-year experiment was conducted to investigate willows of Salix × smithiana Willd. (S. smithiana) phytoremediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) derived by fly ash from biomass combustion. The total removal of ash PAHs in phytoremediation treatment was 50.9% after three consecutive years while the ash PAHs were decreased in natural attenuated soil by 9.9% in the end of the experiment. The ash and spiked PAHs with low and medium molecular weight were susceptible to be removed in higher rates than high molecular weight PAHs. Lower bioconcentration factors of individual PAHs were observed in willow shoots than in roots. The estimated relative direct removal of PAHs by S. smithiana in phytoremediation was significantly lower than 1% suggesting that the contribution of S. smithiana to take up PAHs from soil was negligible and the degradation of PAHs occurred mainly in soil. Phytoremediation using S. smithiana could be seen as a feasible and environmentally friendly approach of arable soils impacted by a PAH contaminated biomass fly ash.
اظهر المزيد [+] اقل [-]Uptake, translocation and accumulation of the fungicide benzene kresoxim-methyl in Chinese flowering cabbage (Brassica campastris var. parachinensis) and water spinach (Ipomoea aquatica)
2020
Chen, Yan | Lu, Yuhui | Nie, Enguang | Akhtar, Kashif | Zhang, Subin | Ye, Qingfu | Wang, Haiyan
Benzene kresoxim-methyl (BKM) is an important methoxyacrylate-based strobilurin fungicide widely used against various phytopathogenic fungi in crops. Uptake, translocation and accumulation of BKM in vegetables remain unknown. This study was designed to investigate uptake, translocation, and accumulation of ¹⁴C-BKM and/or its potential metabolites in Chinese flowering cabbage and water spinach. ¹⁴C-BKM can be gradually taken up to reach a maximum of 44.4% of the applied amount by Chinese flowering cabbage and 34.6% by water spinach at 32 d after application. The ¹⁴CO₂ fractions released from the hydroponic plant system reached 37.8% for cabbage and 45.8% for water spinach, respectively. Concentrations of ¹⁴C in leaves, stems and roots all gradually increased as vegetables growing, with relative 44.9% (cabbage) and 26.8% (water spinach) of translocated from roots to edible leaves. In addition, ¹⁴C in leaves was mainly accumulated in the bottom leaves, which was visualized by quantitative radioautographic imaging. The bioconcentration factor of ¹⁴C ranged from 7.1 to 38.2 mL g⁻¹ for the cabbage and from 8.6 to 24.6 mL g⁻¹ for the water spinach. The translocation factor of BKM ranged from 0.10 to 2.04 for the cabbage and 0.10–0.46 for the water spinach throughout the whole cultivation period, indicating that the cabbage is easier to translocate BKM from roots to leaves and stems than water spinach. In addition, the daily human exposure values of BKM in both vegetables were much lower than the limited dose of 0.15 mg day⁻¹. The results help assess potential accumulation of BMK in vegetables and potential risk.
اظهر المزيد [+] اقل [-]Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in São Paulo
2020
Locosselli, Giuliano Maselli | Moreira, Tiana Carla Lopes | Chacón-Madrid, Katherine | Arruda, Marco Aurélio Zezzi | Camargo, Evelyn Pereira de | Kamigauti, Leonardo Yoshiaki | da Trindade, Ricardo Ivan Ferreira | Andrade, Maria de Fátima | André, Carmen Diva Saldiva de | André, Paulo Afonso de | Singer, Julio M. | Saiki, Mitiko | Zaccarelli-Marino, Maria Angela | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Buckeridge, Marcos Silveira
Although air pollution decreased in some cities that shifted from an industrial to a service-based economy, and vehicular emission regulation became more restrictive, it is still a major risk factor for mortality worldwide. In central São Paulo, Brazil, air quality monitoring stations and tree-ring analyses revealed a decreasing trend in the concentrations of particulate matter and metals. Such trends, however, may not be observed in industrial districts located in the urban periphery, where the usual mobile sources may be combined with local stationary sources. To evaluate environmental pollution in an industrial district in southeastern São Paulo, we assessed its spatial variability, by measuring magnetic properties and concentrations of Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Sr, Zn in the bark of 62 trees, and its temporal trends, by measuring Cd, Cu, Ni, Pb, V, Zn in tree rings of three trees. Source apportionment analysis based on tree barks revealed two clusters with high concentrations of metals, one related to vehicular and industrial emissions (Al, Ba, Cu, Fe, Zn) in the east side of the industrial cluster, and the other related to soil resuspension (Cu, Zn, Mn) in its west side. These patterns are also supported by the magnetic properties of bark associated with iron oxides and titanium-iron alloy concentrations. Dendrochemical analyses revealed that only the concentrations of Pb consistently decreased over the last four decades. The concentrations of Cd, Cu, Ni, V, and Zn did not significantly decrease over time, in contrast with their negative trends previously reported in central São Paulo. This combined biomonitoring approach revealed spatial clusters of metal concentration in the vicinity of this industrial cluster and showed that the local population has not benefited from the decreasing polluting metal concentrations in the last decades.
اظهر المزيد [+] اقل [-]Mussels facilitate the sinking of microplastics to bottom sediments and their subsequent uptake by detritus-feeders
2020
Piarulli, Stefania | Airoldi, Laura
Microplastics (MP) are omnipresent contaminants in the oceans, however little is known about the MP transfer between marine compartments and species. Three connected laboratory experiments using the filter-feeding mussel Mytilus galloprovincialis and the omnivorous polichaete Hediste diversicolor were conducted to evaluate whether the filtering action by mussels affects the vertical transfer of MP of different sizes (MPSMALL = 41 μm; MPLARGE = 129 μm) and densities (polyamide = 1.15 g cm⁻³; polypropylene = 0.92 g cm⁻³) across compartments and species with different feeding modes. Mussels significantly removed MP from the water column by incorporating them into biodeposits. This effect was particularly evident for the MPSMALL, whose deposition from the water column to the bottom was enhanced (about 15%) by the action of mussels. The incorporation of MP into faecal pellets increased the particles’ sinking velocity by about 3–4 orders of magnitude. Conversely, the MP presence significantly decreased the depositional velocities of faecal pellets, and the magnitude of this effect was greater with increasing MP size and decreasing density. The MP incorporation into mussels’ biodeposits also more than doubled the amount of MP uptake by H. diversicolor. We conclude that detrital pathways could be a transfer route of MP across marine compartments and food webs, potentially affecting the distribution of MP in sediments and creating hot-spots of bioavailable MP.
اظهر المزيد [+] اقل [-]Associations of fluoride exposure with sex steroid hormones among U.S. children and adolescents, NHANES 2013–2016
2020
Bai, Rongpan | Huang, Yun | Wang, Fang | Guo, Jing
Fluoride mediated disruption of sex steroid hormones has been demonstrated in animals. However, evidence from humans was limited and contradictory, especially for children and adolescents. Based on data of the National Health and Nutrition Survey (NHANES) 2013–2016, a total of 3392 subjects aged 6–19 years were analyzed in this cross-sectional study. Both plasma and water fluoride levels were quantified electrometrically using the ion-specific electrode. Sex steroid hormones of total testosterone, estradiol and sex hormone-binding globulin (SHBG) were tested in serum. Percent changes and 95% confidence intervals (CIs) in sex steroid hormones associated with tertiles of fluoride levels (setting the first as reference) were estimated using adjusted linear regression models by stratification of gender and age. Compared with subjects at the first tertile of plasma fluoride, percent changes (95% CIs) in testosterone were −8.08% (−17.36%, 2.25%) and −21.65% (−30.44%, −11.75%) for the second and third tertiles, respectively (P ₜᵣₑₙd <0.001). Male adolescents at the third tertile of plasma fluoride had decreased levels of testosterone (percent change = −21.09%, 95% CIs = −36.61% to −1.77%). Similar inverse associations were also found when investigating the relationships between plasma fluoride and estradiol. Besides, the data indicated decreased levels of SHBG associated with water and plasma fluoride among the male adolescents (percent change of the third tertile = −9.39%, 95% CIs = −17.25% to −0.78%) and female children (percent change of the second tertile = −10.78%, 95% CIs = −17.55% to −3.45%), respectively. The data indicated gender- and age-specific inverse associations of fluoride in plasma and water with sex steroid hormones of total testosterone, estradiol and SHBG in U.S. children and adolescents. Prospective cohort studies are warranted to confirm the causality.
اظهر المزيد [+] اقل [-]Sampling microfibres at the sea surface: The effects of mesh size, sample volume and water depth
2020
Ryan, Peter G. | Suaria, Giuseppe | Perold, Vonica | Pierucci, Andrea | Bornman, Thomas G. | Aliani, Stefano
Microfibres are one of the most ubiquitous particulate pollutants, occurring in all environmental compartments. They are often assumed to be microplastics, but include natural as well as synthetic textile fibres and are perhaps best treated as a separate class of pollutants given the challenges they pose in terms of identification and contamination. Microfibres have been largely ignored by traditional methods used to sample floating microplastics at sea, which use 300–500 μm mesh nets that are too coarse to sample most textile fibres. There is thus a need for a consistent set of methods for sampling microfibres in seawater. We processed bulk water samples through 0.7–63 μm filters to collect microfibres in three ocean basins. Fibre density increased as mesh size decreased: 20 μm mesh sampled 41% more fibres than 63 μm, and 0.7 μm filters sampled 44% more fibres than 25 μm mesh, but mesh size (20–63 μm) had little effect on the size of fibres retained. Fibre density decreased with sample volume when processed through larger mesh filters, presumably because more fibres were flushed through the filters. Microfibres averaged 2.5 times more abundant at the sea surface than in water sampled 5 m sub-surface. However, the data were noisy; counts of replicate 10-L samples had low repeatability (0.15–0.36; CV = 56%), suggesting that single samples provide only a rough estimate of microfibre abundance. We propose that sampling for microfibres should use a combination of <1 μm and 20–25 μm filters and process multiple samples to offset high within-site variability in microfibre densities.
اظهر المزيد [+] اقل [-]Microplastics have lethal and sublethal effects on stream invertebrates and affect stream ecosystem functioning
2020
López-Rojo, Naiara | Pérez Ovalle, Javier | Alonso, Alberto | Correa-Araneda, Francisco | Boyero, Luz
Microplastics (MPs) are contaminants of increasing concern due to their abundance, ubiquity and persistence over time. However, knowledge about MP distribution in fresh waters and their effects on freshwater organisms is still scarce, and there is virtually no information about their potential influence on ecosystem functioning. We used a microcosm experiment to examine the effects of MPs (fluorescent, 10-μm polystyrene microspheres) at different concentrations (from 0 to 10³ particles mL⁻¹) on leaf litter decomposition (a key process in stream ecosystems) and associated organisms (the caddisfly detritivore Sericostoma pyrenaicum), and the extent to which MPs were attached to leaf litter and ingested and egested by detritivores, thus assessing mechanisms of MP trophic transfer. We found that MPs caused detritivore mortality (which increased 9-fold at the highest concentration) but did not affect their growth. Analysis of fluorescence in samples suggested that MPs were rapidly ingested (most likely through ingestion of particles attached to leaf litter) and egested. Leaf litter decomposition was reduced as a result of increasing MP concentrations; the relationship was significant only in the presence of detritivores, but microbially-mediated decomposition showed a similar trend. Our findings provide novel evidence of harmful effects of MPs on aquatic insects and stream ecosystem functioning, and highlight the need for the standardization of methods in future experiments with MPs in order to allow comparisons and generalizations.
اظهر المزيد [+] اقل [-]