خيارات البحث
النتائج 1791 - 1800 من 6,558
Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions النص الكامل
2020
Sørensen, Lisbet | Rogers, Emilie | Altin, Dag | Salaberria, Iurgi | Booth, Andy M.
Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions النص الكامل
2020
Sørensen, Lisbet | Rogers, Emilie | Altin, Dag | Salaberria, Iurgi | Booth, Andy M.
Organic chemical pollutants associated with microplastic (MP) may represent an alternative exposure route for these chemicals to marine biota. However, the bioavailability of MP-sorbed organic pollutants under conditions where co-exposure occurs from the same compounds dissolved in the water phase has rarely been studied experimentally, especially where pollutant concentrations in the two phases are well characterized. Importantly, higher concentrations of organic pollutants on ingested MP may be less bioavailable to aquatic organisms than the same chemicals present in dissolved form in the surrounding water. In the current study, the sorption kinetics of two model polycyclic aromatic hydrocarbons (PAHs; fluoranthene and phenanthrene) to MP particles in natural seawater at 10 and 20 °C were studied and the bioavailability of MP-sorbed PAHs to marine copepods investigated. Polyethylene (PE) and polystyrene (PS) microbeads with mean diameters ranging from 10 to 200 μm were used to identify the role of MP polymer type and size on sorption mechanisms. Additionally, temperature dependence of sorption was investigated. Results indicated that adsorption dominated at lower temperatures and for smaller MP (10 μm), while absorption was the prevailing process for larger MP (100 μm). Monolayer sorption dominated at lower PAH concentrations, while multilayer sorption dominated at higher concentrations. PE particles representing ingestible (10 μm) and non-ingestible (100 μm) MP for the marine copepod species Acartia tonsa and Calanus finmarchicus were used to investigate the availability and toxicity of MP-sorbed PAHs. Studies were conducted under co-exposure conditions where the PAHs were also present in the dissolved phase (Cfᵣₑₑ), thereby representing more environmentally relevant exposure scenarios. Cfᵣₑₑ reduction through MP sorption was reflected in a corresponding reduction of lethality and bioaccumulation, with no difference observed between ingestible and non-ingestible MP. This indicates that only free dissolved PAHs are significantly bioavailable to copepods under co-exposure conditions with MP-sorbed PAHs.
اظهر المزيد [+] اقل [-]Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions النص الكامل
2020
Sørensen, Lisbet | Rogers, Emilie | Altin, Dag | Salaberria, Iurgi | Booth, Andy
Organic chemical pollutants associated with microplastic (MP) may represent an alternative exposure route for these chemicals to marine biota. However, the bioavailability of MP-sorbed organic pollutants under conditions where co-exposure occurs from the same compounds dissolved in the water phase has rarely been studied experimentally, especially where pollutant concentrations in the two phases are well characterized. Importantly, higher concentrations of organic pollutants on ingested MP may be less bioavailable to aquatic organisms than the same chemicals present in dissolved form in the surrounding water. In the current study, the sorption kinetics of two model polycyclic aromatic hydrocarbons (PAHs; fluoranthene and phenanthrene) to MP particles in natural seawater at 10 and 20 °C were studied and the bioavailability of MP-sorbed PAHs to marine copepods investigated. Polyethylene (PE) and polystyrene (PS) microbeads with mean diameters ranging from 10-200 µm were used to identify the role of MP polymer type and size on sorption mechanisms. Additionally, temperature dependence of sorption was investigated. Results indicated that adsorption dominated at lower temperatures and for smaller MP (10 µm), while absorption was the prevailing process for larger MP (100 µm). Monolayer sorption dominated at lower PAH concentrations, while multilayer sorption dominated at higher concentrations. PE particles representing ingestible (10 µm) and non-ingestible (100 µm) MP for the marine copepod species Acartia tonsa and Calanus finmarchicus were used to investigate the availability and toxicity of MP-sorbed PAHs. Studies were conducted under co-exposure conditions where the PAHs were also present in the dissolved phase (Cfree), thereby representing more environmentally relevant exposure scenarios. Cfree reduction through MP sorption was reflected in a corresponding reduction of lethality and bioaccumulation, with no difference observed between ingestible and non-ingestible MP. This indicates that only free dissolved PAHs are significantly bioavailable to copepods under co-exposure conditions with MP-sorbed PAHs. | publishedVersion
اظهر المزيد [+] اقل [-]Microcystin-LR promotes zebrafish (Danio rerio) oocyte (in vivo) maturation by activating ERK1/2-MPF signaling pathways, and cAMP is involved in this process النص الكامل
2020
Zhan, Chunhua | Zhang, Feng | Liu, Wanjing | Zhang, Xuezhen
Cyanobacterial blooms and their secondary metabolites, microcystins (MCs), are not only toxic to aquatic organisms, but also to humans. MCs exert reproductive toxicity in female fish by affecting the oocyte development. However, the mechanism behind MC-LR interference in oocyte development remains largely unknown. In our study, adult female zebrafish were exposed to MC-LR (0, 1, 5, 20 μg/L) for 30 d. After exposure to MC-LR for 30 d, fertilized eggs from the treated females and healthy males were collected and cultured in water without MC-LR. Histomorphological observations showed pathological damage in the ovary after MC-LR exposure, which was mainly characterized by enlarged intercellular spaces, detachment of follicular cells from oocytes, and vacuolation of parenchymal tissues. The 20 μg/L MC-LR treatment caused a remarkable increase in the rate of the zebrafish oocytes germinal vesicle breakdown (GVBD) and a significant decrease in the levels of cyclic adenosine monophosphate (cAMP) and vitellogenin (VTG). In addition, the phosphorylation levels of the extracellular signal-regulated kinases (ERK) were elevated in ovaries from zebrafish exposed to 5 and 20 μg/L MC-LR, and cyclinB phosphorylation levels were also upregulated notably in the 20 μg/L MC-LR group. However, MC-LR exposure did not cause any change in the levels of cAMP-dependent protein kinase (PKA) protein and cdc2 phosphorylation in all the treatments. All the doses of MC-LR reduced the number of eggs, prematurely hatched the fertilized eggs and increased the abnormal rate of offspring generation. In summary, the present study demonstrates that MC-LR promotes oocyte maturation by activating the ERK1/2 and MPF signaling pathways, and cAMP is involved in this process.
اظهر المزيد [+] اقل [-]Identification of inhalable rutile and polycyclic aromatic hydrocarbons (PAHs) nanoparticles in the atmospheric dust النص الكامل
2020
Gallego-Hernández, Ana L. | Meza-Figueroa, Diana | Tanori, Judith | Acosta-Elías, Mónica | González-Grijalva, Belem | Maldonado-Escalante, Juan F. | Rochín-Wong, Sarai | Soto-Puebla, Diego | Navarro-Espinoza, Sofia | Ochoa-Contreras, Roberto | Pedroza-Montero, Martín
Addressing the presence of rutile nanoparticles (NPs) in the air is a work in progress, and the development of methodologies for the identification of NPs in atmospheric dust is essential for the assessment of its toxicological effects. To address this issue, we selected the fast growing desertic city of Hermosillo in northern Mexico. Road dust (n = 266) and soils (n = 10) were sampled and bulk Ti-contents were tested by portable X-ray fluorescence. NPs were extracted from atmospheric dust by PM₁.₀-PTFE filters and further characterized by Confocal Raman Microscopy, Energy-dispersive X-ray spectroscopy (EDS) coupled to Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Results showed (i) the average concentration of Ti in road dust (3447 mg kg⁻¹) was similar to natural values and worldwide urban dusts; (ii) the bulk geochemistry was not satisfactory for Ti-NPs identification; (iii) 76% of the total extracted PM₁.₀ sample corresponded to NPs; (iv) mono-microaggregates of rutile NPs were identified; (v) ubiquitous polycyclic aromatic hydrocarbons (PAHs) were linked to NPs. The genotoxicity of rutile and PAHs, in connection with NPs content, make us aware of a crucial emerging environmental issue of significant health concern, justifying further research in this field.
اظهر المزيد [+] اقل [-]Toxic trace metals in size-segregated fine particulate matter: Mass concentration, respiratory deposition, and risk assessment النص الكامل
2020
Rovelli, Sabrina | Cattaneo, Andrea | Nischkauer, Winfried | Borghi, Francesca | Spinazzè, Andrea | Keller, Marta | Campagnolo, Davide | Limbeck, Andreas | Cavallo, Domenico M.
To characterise the mass concentration, size-distribution, and respiratory deposition of selected trace metals (Cr, Mn, Fe, Ni, Cu, Zn, Ba, and Pb) in size-segregated PM₂.₅, a long-term monitoring campaign was undertaken at an urban background site in Como (Northern Italy). 96-h aerosol samples were collected weekly, from May 2015 to March 2016, using a 13-stage low pressure impactor and analysed via laser ablation-inductively coupled plasma-mass spectrometry. Significantly higher levels of trace metals were generally found during the heating season (two to more than four times) compared to the non-heating period at all size ranges, especially for concentrations in PM₀.₁–₁. Distinct distribution profiles characterised the different elements, even though the corresponding heating and non-heating shapes always exhibited similar features, with negligible seasonal shifts in the average mass median aerodynamic diameters. Fe, Ba, and Cu had >70% of their mass in PM₁–₂.₅, whereas Pb, Zn, and Ni showed higher contributions in the accumulation mode (>60%). Finally, broad size-distributions were found for Cr and Mn. The multiple-path particle dosimetry model estimated the overall deposition fractions in human airways varying between 27% (Pb) and 48% (Ba). The greatest deposition variability was always registered in the head region of the respiratory system, with the highest contributions for those metals predominantly accumulated in the PM₂.₅ coarse modes. In contrast, the deposition in the deepest respiratory tract maintained nearly constant proportions over time, becoming notably important for Pb, Ni, and Zn (∼13%) with respect to their total deposition. The comparison with national limits established for Pb and Ni suggested the absence of significant risks for the local population, as expected, with average concentrations two orders of magnitude lower than the corresponding annual limit and objective value. Similar findings were reported for all the other metals, for which the estimated hazard quotients were always well <1.
اظهر المزيد [+] اقل [-]Pesticide treatment reduces hydrophobic pollutant contamination in Cucurbita pepo through competitive binding to major latex-like proteins النص الكامل
2020
Fujita, Kentaro | Kondoh, Yasumitsu | Honda, Kaori | Haga, Yuki | Osada, Hiroyuki | Matsumura, Chisato | Inui, Hideyuki
Hydrophobic pollutants are still present in agricultural soil. The Cucurbitaceae family accumulates hydrophobic pollutants through roots, resulting in the contamination of aerial parts. Major latex-like proteins (MLPs), found in the Cucurbitaceae family, play an important role in the contamination by binding to these hydrophobic pollutants. Thus far, efficient cultivation methods for the production of safe crops with lower concentrations of hydrophobic pollutants have not been developed. Herein, we competitively inhibited the binding of MLPs to hydrophobic pollutants, pyrene and dieldrin, in roots by using MLP binding pesticides. By conducting a chemical array screening, we found that MLPs bound compounds with indole- and quinazoline-like structures. Commercially available pesticides amisulbrom and pyrifluquinazon, which possess such structures, successfully inhibited the binding of MLPs to pyrene and dieldrin in vitro. When zucchini plants were cultivated in the contaminated soil with 1.25 mmol/kg pyrene and 12.5 μmol/kg dieldrin, the concentration of pyrene and dieldrin in xylem sap was significantly decreased by 30% and 15%, respectively. Our results demonstrate that the pesticides binding to MLPs competitively inhibited the binding of MLPs to pyrene and dieldrin in roots, resulting in the reduction of overall contamination. This study proposes a novel approach to cultivate safer crops and advances the utilization of unknown functions of pesticides.
اظهر المزيد [+] اقل [-]Edible size of polyethylene microplastics and their effects on springtail behavior النص الكامل
2020
Kim, Shin Woong | An, Youn-Joo
Many reliable studies have provided evidence of microplastic ingestion by soil organisms. However, further research is required to determine the edible size of microplastics, especially given the ubiquity of microplastics and their adverse effects on the soil environment. Determining the size range of microplastics that can be ingested by soil organisms is crucial for the prediction of the exposure route and toxicity mechanisms of microplastics in soil. Springtails, organisms prevalent in a wide variety of soil ecosystems, can ingest or transport microplastics; however, direct evidence for this has not been reported. To address this knowledge gap, we designed dietary exposure experiments under laboratory conditions, using the springtail species Folsomia candida. The springtails were administered polyethylene microplastics in three different sizes (2, 34, and 66 μm) via their food for a short period of time; we further observed the intestinal presence of microplastics via fluorescence microscopy to determine the maximum edible size. We evaluated the effects of ingested microplastics on springtails by quantifying their moving behavior. The results show that the edible size of microplastics is < 66.0 ± 10.9 μm, and microplastics smaller than this can significantly reduce the velocity and distance of springtail movement by 74% ± 38% compared with the control group. Based on this finding, the broader fate and toxicity of microplastics in soil environments can be estimated. Furthermore, the average velocity and distance of springtail movement decreases in response to microplastic ingestion, highlighting the negative effects of microplastics on soil organisms.
اظهر المزيد [+] اقل [-]Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences النص الكامل
2020
Pedersen, Adam F. | Meyer, Danielle N. | Petriv, Anna-Maria V. | Soto, Abraham L. | Shields, Jeremiah N. | Akemann, Camille | Baker, Bridget B. | Tsou, Wei-Ling | Zhang, Yongli | Baker, Tracie R.
Microplastics (MPs) are a ubiquitous pollutant detected not only in marine and freshwater bodies, but also in tap and bottled water worldwide. While MPs have been extensively studied, the toxicity of their smaller counterpart, nanoplastics (NPs), is not well documented. Despite likely large-scale human and animal exposure to NPs, the associated health risks remain unclear, especially during early developmental stages. To address this, we investigated the health impacts of exposures to both 50 and 200 nm polystyrene NPs in larval zebrafish. From 6 to 120 h post-fertilization (hpf), developing zebrafish were exposed to a range of fluorescent NPs (10-10,000 parts per billion). Dose-dependent increases in accumulation were identified in exposed larval fish, potentially coinciding with an altered behavioral response as evidenced through swimming hyperactivity. Notably, exposures did not impact mortality, hatching rate, or deformities; however, transcriptomic analysis suggests neurodegeneration and motor dysfunction at both high and low concentrations. Furthermore, results of this study suggest that NPs can accumulate in the tissues of larval zebrafish, alter their transcriptome, and affect behavior and physiology, potentially decreasing organismal fitness in contaminated ecosystems. The uniquely broad scale of this study during a critical window of development provides crucial multidimensional characterization of NP impacts on human and animal health.
اظهر المزيد [+] اقل [-]Human health risk assessment for exposure to BTEXN in an urban aquifer using deterministic and probabilistic methods: A case study of Chennai city, India النص الكامل
2020
Rajasekhar, Bokam | Nambi, Indumathi M. | Govindarajan, Suresh Kumar
The aquifer in Tondiarpet, Chennai, had been severely contaminated with petroleum fuels due to an underground pipeline leakage. Groundwater samples were analyzed quarterly for priority pollutants such as benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) using purge and trap gas chromatography and mass spectrometer from 2016 to 2018. The maximum concentrations of BTEXN in groundwater at the site were found to be greater than the permissible limits significantly. Among the five sampling locations (MW1, MW2, MW3, MW4, and MW5), mean BTEXN levels were found to be higher near MW2, confirming the source location of petroleum leakage. Human health risk assessment was carried out using deterministic and probabilistic methods for exposure to BTEXN by oral and dermal exposure pathways. Risk analysis indicated that mean cancer and non-cancer risks were many times higher than the allowable limits of 1E-06 and 1 respectively in all age groups (children, teens, and adults), implying the adverse health effects. Oral exposure is predominately contributing (60–80%) to the total health risk in comparison to the dermal exposure route. Variability and uncertainty were addressed using the Monte Carlo simulations and the resultant minimum, maximum, 5th, 95th, and mean percentile risks were predicted. Under the random exposure conditions to BTEXN, it was estimated that the risk would become unacceptable for >98.7% of the exposed population. Based on the sensitivity analysis, exposure duration, and ingestion rate are the crucial variables contributing significantly to the health risk. As part of the risk management, preliminary remediation goals for the study site were estimated, which require >99% removal of the BTEXN contamination for risk-free exposures. It is suggested that the residents of Tondiarpet shouldn’t utilize the contaminated groundwater mainly for oral ingestion to lower the cancer incidence related to exposure to BTEXN.
اظهر المزيد [+] اقل [-]Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia النص الكامل
2020
Nan, Bingxu | Su, Lei | Kellar, Claudette | Craig, Nicholas J. | Keough, Michael J. | Pettigrove, Vincent
Compared to marine microplastics research, few studies have bio-monitored microplastics in inland waters. It is also important to understand the microplastics’ uptake and their potential risks to freshwater species. The Australian glass shrimp Paratya australiensis (Family: Atyidae) is commonly found in fresh waterbodies in eastern Australia, and are sensitive to anthropogenic stressors but have a wide tolerance range to the natural environmental conditions. This study aimed to understand the microplastics’ occurrence and types in water samples and the shrimp P. australiensis, and identify if the shrimp could be a suitable bioindicator for microplastic pollution. Surface water and P. australiensis across ten urban and rural freshwater sites in Victoria were sampled. In total, 30 water samples and 100 shrimp were analysed for microplastic content, and shrimp body weights and sizes were also recorded. Microplastics were picked, photographed and identified using FT-IR microscopy: in water samples, 57.9% of items including suspect items were selected to identify; all microplastics found in shrimp samples were identified. Microplastics were present in the surface waters of all sites, with an average abundance of 0.40 ± 0.27 items/L. A total of 36% of shrimp contained microplastics with an average of 0.52 ± 0.55 items/ind (24 ± 31 items/g). Fibre was the most common shape, and blue was the most frequent colour in both water and shrimp samples. The dominant plastic types were polyester in water samples, and rayon in shrimp samples. Even though results from this study show a relatively low concentration of microplastics in water samples in comparison with global studies, it is worth noticing that microplastics were regularly detected in fresh waterbodies in Victoria, Australia. Compared with water samples, shrimp contained a wider variety of plastic types, suggesting they may potentially behave as passive samplers of microplastics pollution in freshwater environments.
اظهر المزيد [+] اقل [-]A new spatially explicit model of population risk level grid identification for children and adults to urban soil PAHs النص الكامل
2020
Li, Fufu | Wu, Shaohua | Wang, Yuanmin | Yan, Daohao | Qiu, Lefeng | Xu, Zhenci
The traditional incremental lifetime cancer risk (ILCR) model of urban soil polycyclic aromatic hydrocarbon (PAH) health risk assessment has a large spatial scale and commonly calculates relevant statistics by regarding the whole area as a geographic unit but fails to consider the high heterogeneity of the PAH distribution and differences in population susceptibility and density in an area. Therefore, the risk assessment spatial performance is insufficient and does not reflect the characteristics of cities, which are centered on human activities and serve the needs of humans, thus making it difficult to effectively support PAH prevention and treatment measures in cities. Here, the random forest model combined with the kriging residual model (RFerr-K) is used to estimate high-precision PAH distributions, separately considering the exposure characteristics of children and adults with different susceptibilities, and kindergarten point-of-interest (POI) and population density index (PDI) data were used to estimate the distributions of the kindergarten children and adults in the study area. Through the refined expression of these three dimensions, a new spatially explicit model of the incremental lifetime cancer-causing population distribution (MapPILCR) was constructed, and the risk threshold range delineation method was proposed to accurately identify regional risk levels. The results showed that the RFerr-K model significantly improves the accuracy of PAH prediction. The susceptibility index (SI) of children is 45% higher than that of adults, and POI and PDI data can be used effectively in population distribution estimation. The MapPILCR model provides a useful method for the spatially explicit assessment of the cancer risk of urban populations to inspire urban pollution grid management.
اظهر المزيد [+] اقل [-]