خيارات البحث
النتائج 181 - 190 من 61,991
Impact of Environmental Quality Variables and Socio-Economic Factors on Human Health: Empirical Evidence from China
2018
Ahmad, M. | Ur Rahman, Z. | Hong, L. | Khan, S. | Khan, Z. | Naeem Khan, M.
Carbon dioxide (CO2) is the foremost gas, emanated from human activities, and the best-known greenhouse gas, contributing to global warming, thus its negative effect on human health cannot be disregarded. The current paper investigates the relation between environmental quality variables, socio-economic factors, and human health from 1960 to 2014 in China, using Auto Regressive Distribution Lag (ARDL) Model. It selects three main environmental quality indicators (carbon emissions from coal, natural gas, and petrol) along with two representative socio-economic factors variables (per capita income and urban population) to explain the interaction mechanism. The results validate the long-term negative equilibrium impact of carbon emissions from the consumption of natural gas, coal, and petroleum on human health. The findings also reveal that migration from the countryside to cities and increase in per capita income improve quality of health. It is suggested that lowering emission of Carbon dioxide (CO2), which is the principal cause of greenhouse gas emissions, should be important in setting up the high quality of life for citizens.
اظهر المزيد [+] اقل [-]Effects of Cadmium and Dimethoate on Some Biological and Biochemical Indices in Freshwater Green Algae, Spirogyra sp.
2018
Banaee, M. | Taheri, S. | Hedayatzadeh, F.
The present study investigates the influence of an organophosphorus pesticide, namely Dimethoate, and cadmium on biomarkers of the green alga, Spirogyra sp., in a 14-day experiment. For so doing, it has exposed Spirogyra sp. to 0.0, 100, 200, and 400 mg L-1 of Dimethoate and/or 1 mg L-1 of cadmium chloride (CdCl2) to observe a reduction in chlorophyll a and b level in Spirogyra sp., exposed to 200 and 400 mg L-1 of Dimethoate as well as algae treated with cadmium alone or in combination with Dimethoate. Levels of malondialdehyde (MDA) and total antioxidant in cells, as well as the activity of ascorbate peroxidase (APX) soar in Spirogyra sp., exposed to Dimethoate and/or cadmium (alone or simultaneously). Also Spirogyra’sexposure to cadmium and/or Dimethoate significantly increases catalase (CAT) activity. However, levels of carotenoids in Spirogyra sp., treated with both cadmium and Dimethoate, decline significantly, with no significant change found in catalase activity of Spirogyra sp., exposed to 100 and 200 mg L-1 of Dimethoate, in comparison to the control group. However, CAT activity rises significantly in Spirogyra sp., treated with 400 mg L-1 of Dimethoate. Cadmium can cause cytotoxicity in 1 mg L-1 concentration of the green algae(Spirogyra sp.). On the whole, investigating the biological and biochemical markers in Spirogyra sp., exposed to different concentrations of Dimethoate, has revealed some concentration-dependent toxicity. Furthermore, Dimethoate can synergistically increase toxicity and bioavailability of cadmium in Spirogyra sp.
اظهر المزيد [+] اقل [-]Facile Synthesis of Zn-TiO2 Nanostructure, Using Green Tea as an Eco-Friendly Reducing Agent for Photodegradation of Organic Pollutants in Water
2018
tavakoli, F. | Badiei, A.
The present study synthesizes Zn-TiO2 photocatalyst via a simple and economic green rout, in which Green Tea is applied as a green reducing agent due to the presence of polyphenols Molecules. Polyphenol molecules in green tea act as a reductant, thus changing Zn2+ to metallic Zn. The by-produced nanocmposites are characterized by using XRD, FESEM, EDS, and DRS. Zn-TiO2 photocatalyst possesses great efficient charge separation properties. In order to investigate the presence of Zn, different weight ratio of Zn to TiO2 (viz. 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt%, and 50 wt%) have been synthesized and their performance in Acid Orange 7 (AO7) photodegradation, compared with pure TiO2. According to the results, the compound with 25 wt% Zn shows 97% degradation of AO7 as a model pollutant. Also, it has been shown that after three tests with EDTA, benzoic acid, and under Ar gas, photodegradation of AO7 with Zn-TiO2 photocatalyst mainly depends on photogenerated holes.
اظهر المزيد [+] اقل [-]Wastewater Remediation via Modified Activated Carbon: A Review
2018
Hasan, M.B. | Hammood, Z.A.
The magnetic derivative of Activated Carbon (AC) is a promising new technique to isolate and recover consumed adsorbent. In this light, the current research seeks to summarise the magnetisation rout of AC and its applications, while identifying both benefits and drawbacks of different synthetic routs. Several methods, such as chemical co-precipitation, hydrothermal, impregnation, ball milling, and one-step synthetic routs, have been studied by previous researchers. Among these methods, chemical co-precipitation is simple, extensively adapted for Magnetic Activated Carbon (MAC) syntheses. In general, the magnetic derivatives of AC show a reduction in the surface area and pore volume, due to introduction of magnetic nanoparticles. Magnetisation enhances contaminants' adsorption, despite the reduction in surface area. It allows elimination of contaminants, barely treated by pristine AC due to the introduction of magnetic materials. Developments in synthetic procedures could overcome the destructive influence of acidity on MAC, providing a shield against it. MAC has been used in several applications, including organic and inorganic contaminant removal. Medically, MAC is used to lead drugs to a specific organ and, thus, reduce damages to non-affected organs. It can be said that the preparation method did not obstruct MAC application for specific contaminant adsorption. MAC regeneration has been reported for several sorption cycles, making the process sustainable and cost-effective. Future work could further develop the synthetic route and enhance the characteristics of the produced composite. It also may consider the influence of iron on the treated water, depending on its proposed usage.
اظهر المزيد [+] اقل [-]Estimation of Annual Effective Dose of 222 Rn and 220 Rn in indoor Air of Rohilkhand region, Uttar Pradesh state, India
2018
Rastogi, N. | Singh, I. | Goswami, V.
The annual exposure to indoor radon and thoron imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive of indoor radon and thoron concentrations that were carried out in Rohilkhand region with health risk to the dwellers in the region. In present study, Solid State Nuclear Track Detectors (SSNTDS ) based twin chamber dosimeter with LR-115 track detector were used for estimating Radon (222Rn) and Thoron (220Rn) gas concentration levels in the dwellings of Moradabad city. The average Radon and thoron concentration levels in the studied dwellings were found to vary from 13.5 to 21.8 Bq m-3 and thoron concentrations is found to vary from 11.7 to 19.5 Bqm-3 and its corresponding geometric mean of equilibrium-equivalent 222Rn and 220Rn concentration were found 7.07 to 1.7 Bqm-3 . The total annual effective dose due to the exposure to radon and thoron was found to vary from3.7 to 6.2 mSv/y whereas from thoron found to vary from 0.3 to 0.61 mSv/y.
اظهر المزيد [+] اقل [-]Ecological risk assessment of heavy metals in Hurghada coastal sediment, Red Sea, Egypt
2018
Abdelkader, A. I. | Abuelregal, M. | El-Metwally, M.E. | Hassaan, M. A. | Sanad, E. F.
Twenty samples of Ø3, Ø4 and Ø5 (fine fractions) were collected from four coastal areas (Sheraton, Magawish, Marina and Al mina) in Hurghada, Egypt. Total organic matter (TOM), total organic carbon (TOC) and heavy metals were estimated in the recommended fractions. Results showed that Fe and Pb recorded the highest concentrations with 71.7 and 39 mg/kg respectively. Marina area fractions has the highest carbonate content varied between 50.7 and 65.7 while Magawish area fractions have the lowest organic matter content and carbonate between 10% and 9.40%. On the other hand, Sheraton area has the highest organic matter content. The Principal Component Analysis) PCA) indicate the anthropogenic sources of Zn and Pb at the Red Sea coast based on Sediment Quality Guidelines(SQGs).According to the Enrichment factor (EF) and the geo-accumulation factor (Igeo), Cu and Pb were the highest enriched elements due to anthropogenic contamination; consequently, the studied areas were classified as moderately to highly contaminate by Cu and Pb at Hurghada.
اظهر المزيد [+] اقل [-]Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies
2017
Bahrami, Mehdi | Amiri, Mohammad Javad | Koochaki, Sara
The occurrence of contaminants in wastewaters, and their behavior during wastewater treatment and production of drinking water are key issues to re-use water resources. The present research aims to remove caffeine from aqueous solutions via adsorption technique, using Multi-Wall Carbon Nanotubes (MWCNTs) as an adsorbent under different experimental conditions. The processing variables such as pH (2-12), contact time (1-30 min), initial concentration of caffeine (2-314 mg/L), temperature (25, 50, 80 °C), and adsorbent mass (0.02-0.15 g) have been investigated with equilibrium and kinetic studies on adsorption of caffeine onto MWCNTs being also developed. Maximum caffeine removal has been obtained at pH=7 and adsorption equilibrium has been achieved in 5 min. The use of pseudo second-order kinetic model with determination coefficient of 99.3% (R2=0.993), has made the adsorption kinetics to be well fitted. The caffeine equilibrium adsorption data have been best fitted to Langmuir-Freundlich Model with a relatively high determination coefficient of 96.5% (R2=0.965) and maximum adsorption capacity of 35.61 mg/g of caffeine on MWCNTs. The thermodynamic parameters display that the adsorption of caffeine onto MWCNTs has been non-spontaneous and endothermic in nature.
اظهر المزيد [+] اقل [-]Bioremediation of gasoil by indigenous bacterial strains
2017
Ghavidel, Akbar | Naji Rad, Sumayyah | Alikhani, Hosein Ali
Petroleum refining industries produce large amounts of toxic effluents, causing environmental pollution. Iran is an oil-rich country that encounters oil pollution in its soil and water. Bioremediation of these pollutants is an appropriate solution to tackle them, compared to physical and chemical remediation methods. There are some factors that increase the rate of biodegradation; therefore, this study aims to determine the rate of gasoil bioremediation by two indigenous bacterial isolates (from oil-contaminated soils of an oil refinery south of Tehran) in two different media, namely soil and soil-sawdust mixture. The two superior indigenous bacteria has been isolated through three steps with results indicating that in an optimal environmental condition (temperature= 27±2 °C, humidity of 60%, water holding capacity, and daily manual aeration), bacterial isolates are able to degrade about 78.87% and 93.53% of gasoil during 45 days in soil and soil-sawdust mixture media, respectively. These results imply the role of sawdust in improving aeration, water holding capacity, and-consequently- increasing bioavailability of gasoil to bacteria.
اظهر المزيد [+] اقل [-]Investigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L.
2017
Motesharezadeh, Babak | kamal-poor, Sama | Alikhani, Hossein Ali | Zariee, Mehdi | Azimi, Sina
This research aims to study the effect of Mycorrizal fungus and Plant-Growth-Promoting Bacteria (PGPB) on Cadmium (Cd) uptake by one-year-old Eucalyptus Camaldulensis seedlings. The treatments have involved three levels of heavy metal (0, 30, and 60 mg/kg) for Cd, and three bacterial levels (no bacteria (B0), Bacillus (Ba105), and Pseudomonas (Ps36, Ps448)), inoculated with mycorrhizal fungus Glomus mosseae (M1) and non-inoculated with fungus (M0). Results show that absorption of these elements in plant increased as Cd concentration in soil became more. Inoculation by Ps448 bacteria had an incremental effect on Cd uptake by 90%, compared to the non-inoculated (control) samples. Moreover, inoculation of the plants with mycorrhizal fungus increased Cd uptake by 24%, compared to the control. Also, it has been observed that plant resistance to metal stress and plant growth under such conditions ascended in treatments wherein inoculation happened with mycorrhizal fungus and bacteria. The highest Cd heavy metal uptake has been observed in Eucalyptus (shoots and roots), treatment (C2B2M1) with 648.19 micrograms per one seedling in pot. According to the obtained results, Eucalyptus with biological factors (fungi and bacteria) has the ability to clean and purify the contaminated soil with Cd heavy metal.
اظهر المزيد [+] اقل [-]Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
2017
Alzoubi, Isham | Delavar, Mahmoud R. | Mirzaei, Farhad | Nadjar Arrabi, Babak
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its deleterious side effects, using new techniques such as Artificial Neural Networks (ANNs) and Adaptive Neuron-Fuzzy Inference System (Fuzzy shell-clustering algorithm) models that will lead to a noticeable improvement in the environment. The present research investigates the effects of various soil properties such as Embankment Volume, Soil Compressibility Factor, Specific Gravity, Moisture Content, Slope, Sand Percent, and Soil Swelling Index in energy consumption. The study consists of 90 samples, collected from three different regions. The grid size has been set on 20 m * 20 m from a farmland in Karaj Province, Iran. The aim is to determine the best linear model, using ANNs and ANFIS model to predict environmental indicatorsand find the best model for land leveling in terms of its output (i.e. Labor Energy, Fuel energy, Total Machinery Cost, and Total Machinery Energy). Results show that ANFIS can successfully predict labor energy, fuel energy, total machinery cost, and total machinery energy. All ANFIS-based models have R2 values above 0.995 and MSE values below 0.002 with higher accuracy in prediction, given their higher R2 value and lower RMSE value.
اظهر المزيد [+] اقل [-]