خيارات البحث
النتائج 1811 - 1820 من 6,548
Immobilizing 1–3 nm Ag nanoparticles in reduced graphene oxide aerogel as a high-effective catalyst for reduction of nitroaromatic compounds النص الكامل
2020
Shen, Yi | Zhu, Chao | Chen, Baoliang
To improve catalytic performance and stability of Ag nanoparticles (Ag NPs), a facile ultrasonication-assisted chemical reduction method was developed to fabricate reduced graphene oxide (rGO) aerogels loaded with 1–3 nm Ag NPs under the normal temperature and pressure. The ultrasonication facilitated the dispersion of Ag(I) in the form of silver ammonia and anchored onto GO nanosheets. Ag(I) and GO were simultaneously reduced to Ag(0) immobilizing onto 3D rGO hydrogels within the heterogeneous liquid phase, and ultimately formed 3D rGO-Ag NPs aerogels. The 3D rGO-Ag NPs aerogels displayed superb catalytic performance for the reduction of nitrobenzene (NB), 1,3-dinitrobenzene (DNB) and 4-nitrophenol (NP) into aniline, 1,3-diaminobenzene and 4-aminophenol, respectively. The individual reduction rate Kobs for NB, DNB and NP were 0.168 h−1, 0.109 h−1 and 0.092 h−1, which were much higher than those of other Ag NPs-based materials. Moreover, the immobilization of 1–3 nm Ag NPs in 3D rGO-Ag NPs was stable during the whole reduction reaction without aggregation and leaching. The high stability of Ag NPs in 3D rGO-Ag NPs and superb performance on catalytic reduction of nitroaromatic compounds (NACs) could be concluded into ultrasonication influence in the preparation procedure and synergistic effect of Ag NPs and 3D rGO in the catalytic reduction process. The simple ultrasonication-assisted chemical reduction approach provided a scaled-up application prospect in catalytic reduction of NACs by metal nanoparticle catalysts.
اظهر المزيد [+] اقل [-]Contiguous U.S. surface water availability and short-term trends of wastewater effluent flows in San Antonio, TX النص الكامل
2020
Siddiqui, Samreen | Conkle, Jeremy L. | Sadovski, Alexey
Surface water is a vital and sometimes stressed resource in the U.S. The quantity of this resource is threatened by population shifts and growth concurrently with climate change intensification. Additionally, growing population centers can impact water quality by discharging treated wastewater effluent, which is typically of lower quality than its receiving surface waters. Depending on baseflow and environmental factors, this could decrease water quality. From a previous model prepared in our lab, this study can improve the understanding of water resource quality and quantity, surface water availability for the contiguous U.S. was estimated for each USGS Hydrologic Unit Code (HUC) during 2015. The Mississippi River generally served as a dividing line for surface water availability, with five of the six regions with very low water availability (<24,000 LD⁻¹Km⁻²) residing in the west. These same areas also experience more drought as well as more severe droughts than regions in the east. In regions with lower surface water flows, their water quality is more susceptible to the influence of wastewater effluent discharges, especially near large and growing population centers like San Antonio, Texas. A prediction model was established for this city, which found that from 2009 to 2017 wastewater effluent increased by 1.8%. As cities grow, especially in the Southwest and Western U.S. together with intensified climate change, surface water quantity and quality become more crucial to sustainability. This study shows where surface water availability is already an issue and provides a model to estimate, as well as project, wastewater effluent flows into surface water bodies.
اظهر المزيد [+] اقل [-]Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field النص الكامل
2020
Chakraborty, Sindhunath | Mishra, Arun K.
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC₅₀ concentrations of zinc (3 and 4.5 mg L⁻¹) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
اظهر المزيد [+] اقل [-]Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation النص الكامل
2020
Hamdan, Hamdan Z. | Salam, Darine A.
In this study, response of the microbial communities associated with the bioremediation of crude oil contaminated marine sediments was addressed using sediment microbial fuel cells (SMFCs). Crude oil was spiked into marine sediments at 1 g/kg of dry sediment to simulate a heavily contaminated marine environment. Conventional SMFCs were used with carbon fiber brushes as the electrode components and were enhanced with ferric iron to stimulate electrochemically active bacteria. Controls were operated under open circuit with and without ferric iron stimulation, with the latter condition simulating natural attenuation. Crude oil removal in the Fe enhanced SMFCs reached 22.0 ± 5.5% and was comparable to the measured removal in the control treatments (19.2 ± 7.4% in natural attenuation SMFCs and 15.2 ± 2.7% in Fe stimulated open circuit SMFCs), indicating no major enhancement to biodegradation under the applied experimental conditions. The low removal efficiency could be due to limitations in the mass transfer of the electron donor to the microbes and the anodes. The microbial community structure showed similarity between the iron stimulated SMFCs operated under the open and closed circuit. Natural attenuation SMFCs showed a unique profile. All SMFCs showed high relative abundances of hydrocarbon degrading bacteria rather than anode reducers, such as Marinobacter and Arthrobacter in the case of the natural attenuation SMFCs, and Gordonia in the case of iron stimulated SMFCs. This indicated that the microbial structure during the bioremediation process was mainly determined by the presence of petroleum contamination and to a lesser extent the presence of the ferric iron, with no major involvement of the anode as a terminal electron acceptor. Under the adopted experimental conditions, the absence of electrochemically active microbes throughout the biodegradation process indicates that the use of SMFCs in crude oil bioremediation is not a successful approach. Further studies are required to optimize SMFCs systems for this aim.
اظهر المزيد [+] اقل [-]Estimating natural gas emissions from underground pipelines using surface concentration measurements☆ النص الكامل
2020
Cho, Younki | Ulrich, Bridget A. | Zimmerle, Daniel J. | Smits, Kathleen M.
Rapid response to underground natural gas leaks could mitigate methane emissions and reduce risks to the environment, human health and safety. Identification of large, potentially hazardous leaks could have environmental and safety benefits, including improved prioritization of response efforts and enhanced understanding of relative climate impacts of emission point sources. However, quantitative estimation of underground leakage rates remains challenging, considering the complex nature of methane transport processes. We demonstrate a novel method for estimating underground leak rates based on controlled underground natural gas release experiments at the field scale. The proposed method is based on incorporation of easily measurable field parameters into a dimensionless concentration number, ε, which considers soil and fluid characteristics. A series of field experiments was conducted to evaluate the relationship between the underground leakage rate and surface methane concentration data over varying soil and pipeline conditions. Peak surface methane concentrations increased with leakage rate, while surface concentrations consistently decreased exponentially with distance from the source. Deviations between the estimated and actual leakage rates ranged from 9% to 33%. A numerical modeling study was carried out by the TOUGH3 simulator to further evaluate how leak rate and subsurface methane transport processes affect the resulting methane surface profile. These findings show that the proposed leak rate estimation method may be useful for prioritizing leak repair, and warrant broader field-scale method validation studies. A method was developed to estimate fugitive emission rates from underground natural gas pipeline leaks. The method could be applied across a range of soil and surface covering conditions.
اظهر المزيد [+] اقل [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
اظهر المزيد [+] اقل [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Ruiz Cánovas, Carlos | Olías, Manuel | Macías, F. | Ministerio de Economía y Competitividad (España) | European Commission
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls. | This work was supported by the Spanish Ministry of Economic and Competitiveness through the projects CGL2016-78783-C2-1-R (SCYRE) and by H2020 European Institute of Innovation and Technology (EIT RawMaterials) through the projects Modular recovery process services for hydrometallurgy and water treatment (MORECOVERY). The authors thank to Prof. Yong Sik Ok (Associate Editor) and five different reviewers for their helpful comments that notably improved the quality of the manuscript. | Peer reviewed
اظهر المزيد [+] اقل [-]Methanogenic biodegradation of iso-alkanes and cycloalkanes during long-term incubation with oil sands tailings النص الكامل
2020
Siddique, Tariq | Semple, Kathleen | Li, Carmen | Foght, Julia M.
Microbes indigenous to oil sands tailings ponds methanogenically biodegrade certain hydrocarbons, including n-alkanes and monoaromatics, whereas other hydrocarbons such as iso- and cycloalkanes are more recalcitrant. We tested the susceptibility of iso- and cycloalkanes to methanogenic biodegradation by incubating them with mature fine tailings (MFT) collected from two depths (6 and 31 m below surface) of a tailings pond, representing different lengths of exposure to hydrocarbons. A mixture of five iso-alkanes and three cycloalkanes was incubated with MFT for 1700 d. Iso-alkanes were completely biodegraded in the order 3-methylhexane > 4-methylheptane > 2-methyloctane > 2-methylheptane, whereas 3-ethylhexane and ethylcyclopentane were only partially depleted and methylcyclohexane and ethylcyclohexane were not degraded during incubation. Pyrosequencing of 16S rRNA genes showed enrichment of Peptococcaceae (Desulfotomaculum) and Smithella in amended cultures with acetoclastic (Methanosaeta) and hydrogenotrophic methanogens (Methanoregula and Methanoculleus). Bioaugmentation of MFT by inoculation with MFT-derived enrichment cultures reduced the lag phase before onset of iso-alkane and cycloalkane degradation. However, the same enrichment culture incubated without MFT exhibited slower biodegradation kinetics and less CH₄ production, implying that the MFT solid phase (clay minerals) enhanced methanogenesis. These results help explain and predict continued emissions of CH₄ from oil sands tailings repositories in situ.
اظهر المزيد [+] اقل [-]Intertidal mussels do not stop metal bioaccumulation even when out of water: Cadmium toxicokinetics in Xenostrobus atratus under influences of simulated tidal exposure النص الكامل
2020
Lin, Zhi | Fan, Xingting | Huang, Junlin | Chen, Rong | Tan, Qiao-Guo
Intertidal bivalves are periodically exposed in air. It is tempting to speculate that the organisms would temporarily escape from contaminants when they are out of water and thus have lower risks. In this study, we tested this speculation by investigating cadmium (Cd) toxicokinetics in an intertidal mussel, Xenostrobus atratus, under the effects of tidal exposure using simulated tidal regimes. The uptake rate constant (kᵤ) of Cd ranged from 0.045 L g⁻¹ d⁻¹ to 0.109 L g⁻¹ d⁻¹, whereas the elimination rate constant (kₑ) of Cd ranged from 0.029 d⁻¹ to 0.091 d⁻¹. Cd bioaccumulation was slightly higher in the continuously immersed mussels than the alternately immersed mussels, but much lower than what would be expected if assuming bioaccumulation being proportional to immersion duration. Cd uptake was observed even when mussels were exposed in air, due to uptake of Cd dissolved in mantle cavity fluid and internalization of Cd adsorbed on mussel tissues. Overall, tidal height showed limited effects on Cd bioaccumulation, consistent with the trend of Cd concentrations found in X. atratus collected from different tidal heights. The mantle cavity uptake mechanism is expected to be applicable to other contaminants and bivalves, and should have important implications in risk assessments for intertidal environment.
اظهر المزيد [+] اقل [-]WITHDRAWN: New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan النص الكامل
2020
Nawab, Javed | Wang, Xiaoping | K̲h̲ān, Sardār | Tang, Yu-Ting | Rahman, Ziaur | ʻAlī, ʻĀbid | Dotel, Jagdish | Li, Gang
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
اظهر المزيد [+] اقل [-]Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources النص الكامل
2020
Massimi, Lorenzo | Ristorini, Martina | Simonetti, Giulia | Frezzini, Maria Agostina | Astolfi, Maria Luisa | Canepari, Silvia
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2′,7′-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPᴬᴬ, OPᴰCFᴴ and OPᴰᵀᵀ), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM₁₀ samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPᴬᴬ was particularly sensitive toward coarse particles released from the railway, OPᴰCFᴴ was sensible to fine particles released from the steel plant and domestic biomass heating, and OPᴰᵀᵀ was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
اظهر المزيد [+] اقل [-]