خيارات البحث
النتائج 1851 - 1860 من 7,990
Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling
2021
Koutnik, Vera S. | Leonard, Jamie | Alkidim, Sarah | DePrima, Francesca J. | Ravi, Sujith | Hoek, Eric M.V. | Mohanty, Sanjay K.
Microplastics are continuously released into the terrestrial environment from sources where they are used and produced. These microplastics accumulate in soils, sediments, and freshwater bodies, and some are conveyed via wind and water to the oceans. The concentration gradient between terrestrial inland and coastal regions, the factors that influence the concentration, and the fundamental transport processes that could dynamically affect the distribution of microplastics are unclear. We analyzed microplastic concentration reported in 196 studies from 49 countries or territories from all continents and found that microplastic concentrations in soils or sediments and surface water could vary by up to eight orders of magnitude. Mean microplastic concentrations in inland locations such as glacier (191 n L⁻¹) and urban stormwater (55 n L⁻¹) were up to two orders of magnitude greater than the concentrations in rivers (0.63 n L⁻¹) that convey microplastics from inland locations to water bodies in terrestrial boundary such as estuaries (0.15 n L⁻¹). However, only 20% of studies reported microplastics below 20 μm, indicating the concentration in these systems can change with the improvement of microplastic detection technology. Analysis of data from laboratory studies reveals that biodegradation can also reduce the concentration and size of deposited microplastics in the terrestrial environment. Fiber percentage was higher in the sediments in the coastal areas than the sediments in inland water bodies, indicating fibers are preferentially transported to the terrestrial boundary. Finally, we provide theoretical frameworks to predict microplastics transport and identify potential hotspots where microplastics may accumulate.
اظهر المزيد [+] اقل [-]A meta-analysis of factors influencing concentrations of brominated flame retardants and organophosphate esters in indoor dust
2021
Al-Omran, Layla Salih | Harrad, Stuart | Abou-Elwafa Abdallah, Mohamed
Current assessments of human exposure to flame retardants (FRs) via dust ingestion rely on measurements of FR concentrations in dust samples collected at specific points in time and space. Such exposure assessments are rendered further uncertain by the possibility of within-room and within-building spatial and temporal variability, differences in dust particle size fraction analysed, as well as differences in dust sampling approach. A meta-analysis of peer-reviewed data was undertaken to evaluate the impact of these factors on reported concentrations of brominated flame retardants (BFRs) and organophosphate esters (OPEs) in dust and subsequent human exposure estimates. Except for a few cases, concentrations of FRs in elevated surface dust (ESD) exceeded significantly those in floor dust (FD). The implications of this for exposure assessment are not entirely clear. However, they imply that analysing FD only will underestimate exposure for adults who likely rarely ingest floor dust, while analysing ESD only would overestimate exposure for toddlers who likely rarely ingest elevated surface dust. Considerable within-building spatial variability was observed with no specific trend between concentrations of either BFRs or OPEs in living rooms and bedrooms in the same homes, implying that exposure assessments based solely on sampling one room are uncertain. Substantial differences in FR concentrations were observed in different particle size fractions of dust. This is likely partly attributable to the presence of abraded polymer particles/fibres with high FR concentrations in larger particle size fractions. This has implications for exposure assessment as adherence to skin and subsequent FR uptake via ingestion and dermal sorption varies with particle size. Analysing dust samples obtained from a householder vacuum cleaner (HHVC) compared with researcher collected dust (RCD) will underestimate human exposure to the most of studied contaminants. This is likely due to the losses of volatile FRs from HHVC dust over the extended period such dust spends in the dust bag. Temporal variability in FR concentrations is apparent during month-to-month or seasonal monitoring, with such variability likely due more to changes in room contents rather than seasonal temperature variation.
اظهر المزيد [+] اقل [-]Uptake kinetics and accumulation of pesticides in wheat (Triticum aestivum L.): Impact of chemical and plant properties
2021
Liu, Qianyu | Liu, Yingchao | Dong, Fengshou | Sallach, J Brett | Wu, Xiaohu | Liu, Xingang | Xu, Jun | Zheng, Yongquan | Li, Yuanbo
Plant uptake is an important process in determining the transfer of pesticides through a food chain. Understanding how crops take up and translocate pesticides is critical in developing powerful models to predict pesticide accumulation in agricultural produce and potential human exposure. Herein, wheat was selected as a model plant species to investigate the uptake and distribution of eleven widely used pesticides in a hydroponic system as a function of time for 144 h. The time-dependent uptake kinetics of these pesticides were fitted with a first-order 1-compartment kinetic model. During 144 h, flusilazole and difenoconazole, with relative high log Kₒw (3.87 and 4.36, respectively), displayed higher root uptake rate constants (k). To clarify the role of root lipid content (fₗᵢₚ) in plant accumulation of pesticides, we conducted a lipid normalization meta-analysis using data from this and previous studies, and found that the fₗᵢₚ value was an important factor in predicting the root concentration factor (RCF) of pesticides. An improved correlation was observed between log RCF and log fₗᵢₚKₒw (R² = 0.748, N = 26, P < 0.001), compared with the correlation between log RCF and log Kₒw (R² = 0.686, N = 26, P < 0.001). Furthermore, the hydrophilic pesticides (e.g. log Kₒw < 2) were found to reach partition equilibrium faster than lipophilic pesticides (e.g. log Kₒw > 3) during the uptake process. The quasi-equilibrium factor (αₚₜ) was inversely related to log Kₒw (R² = 0.773, N = 11, P < 0.001) suggesting a hydrophobicity-regulated uptake equilibrium. Findings from this study could facilitate crop-uptake model optimization.
اظهر المزيد [+] اقل [-]Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast
2021
Modareszadeh, Mahsa | Bahmani, Ramin | Kim, DongGwan | Hwang, Seongbin
Arsenic (As) is a toxic pollutant that mainly enters the human body via plants. Therefore, understanding the strategy for reducing arsenic accumulation in plants is important to human health and the environment. Aquaporins are ubiquitous water channel proteins that bidirectionally transport water across cell membranes and play a role in the transportation of other molecules, such as glycerol, ammonia, boric acid, and arsenic acid. Previously, we observed that Arabidopsis PIP2;2, encoding a plasma membrane intrinsic protein, is highly expressed in NtCyc07-expressing Arabidopsis, which shows a higher tolerance to arsenite (As(III)). In this study, we report that the overexpression of AtPIP2;2 enhanced As(III) tolerance and reduced As(III) levels in yeast. Likewise, AtPIP2;2-overexpressing Arabidopsis exhibited improved As(III) tolerance and lower accumulation of As(III). In contrast, atpip2;2 knockout Arabidopsis showed reduced As(III) tolerance but no significant change in As(III) levels. Interestingly, the AtPIP2;2 transcript and protein levels were increased in roots and shoots of Arabidopsis in response to As(III). Furthermore, As(III) efflux was enhanced and As(III) influx/accumulation was reduced in AtPIP2;2-expressing plants. The expression of AtPIP2;2 rescued the As(III)-sensitive phenotype of acr3 mutant yeast by reducing As levels and slightly reduced the As(III)-tolerant phenotype of fps1 mutant yeast by enhancing As content, suggesting that AtPIP2; 2 functions as a bidirectional channel of As(III), while the As(III) exporter activity is higher than the As(III) importer activity. All these results indicate that AtPIP2;2 expression promotes As(III) tolerance by decreasing As(III) accumulation through enhancing As(III) efflux in Arabidopsis. This finding can be applied to the generation of low arsenic crops for human health.
اظهر المزيد [+] اقل [-]Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam
2021
Pesticides may alter soil microbial community structure or diversity, but their impact on microbial co-occurrence patterns remains unclear. Here, the effect of the widely used neonicotinoid insecticide thiamethoxam on the bacterial community in five arable soils was deciphered using the 16S rRNA gene amplicon sequencing technique. The degradation half-life of thiamethoxam in nonsterilized soils was significantly lower than that in sterilized soils, suggesting a considerable contribution from biodegradation. Soil bacterial community diversity diminished in high concentration thiamethoxam treatment and its impact varied with treatment concentration and soil type. Bacterial co-occurrence network complexity significantly decreased after exposure to thiamethoxam. Under thiamethoxam stress, the relative changes in bacterial co-occurrence networks were closely related (the majority of p-values < 0.05) to the soil physicochemical properties, yet the diversity and dominant phyla were slightly related (the majority of p-values > 0.05). Additionally, three bacterial genera, Sphingomonas, Streptomyces, and Catenulispora, were identified to be relevant to the degradation of thiamethoxam in soils. This finding deciphers the succession of the bacterial community under thiamethoxam stress across multiple soils, and emphasizes the potential role of physicochemical properties in regulating the ecotoxicological effect of pesticides on the soil microbiome.
اظهر المزيد [+] اقل [-]Water-soluble graphitic carbon nitride for clean environmental applications
2021
(Dhinasekaran),
The removal of halogenated dye and sensing of pharmaceutical products in the water bodies with quick purification time is of high need due to the scarcity of drinking water. The present work reported on the preparation of graphitic carbon nitride (g-C₃N₄) for quick time water contaminant adsorption, followed by synthesizing silver nanoparticles decorated graphitic carbon nitride for pharmaceutical product sensing using in-situ SERS technique. The prepared graphitic carbon nitride is used to study the adsorption behavior of water contaminants at room temperature, in the presence of methylene blue (MB) as an adsorbate model. The water-soluble graphitic carbon nitride, even at low concentration, possesses an excellent ability to adsorb halogenated organic dye. As a result, the dyes are found to adsorb within ∼5s even without any additional physical or chemical activation. From the UV–Vis absorption investigations, it has been perceived that in the presence of graphitic carbon nitride (g-C₃N₄) the dye adsorption efficacy is observed nearly 80% with the well fitted linearly of R² = 0.9731. Effective in-situ surface-enhanced Raman scattering (SERS) studies for Ag nanoparticles decorated graphitic carbon nitride has been carried out and the obtained result shows good sensing performance of the material towards acetaminophen drug. This method opens the possibility of the Nobel metal decorated graphitic carbon nitride for real-time sensing of SERS-based drug products along with the development of high-performance sensing of the target analyte in the future.
اظهر المزيد [+] اقل [-]The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: a multifaceted analysis
2021
Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 μM and 25 μM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.
اظهر المزيد [+] اقل [-]Multi-antibiotic resistant bacteria in landfill bioaerosols: Environmental conditions and biological risk assessment
2021
Landfills, as well as other waste management facilities are well-known bioaerosols sources. These places may foment antibiotic-resistance in bacterial bioaerosol (A.R.B.) due to inadequate pharmaceutical waste disposal. This issue may foster the necessity of using last-generation antibiotics with extra costs in the health care system, and deaths. The aim of this study was to reveal the multi-antibiotic resistant bacterial bioaerosol emitted by a sanitary landfill and the surrounding area. We evaluated the influence of environmental conditions in the occurrence of A.R.B. and biological risk assessment. Antibiotic resistance found in the bacteria aerosols was compared with the AWaRE consumption classification. We used the BIOGAVAL method to assess the workers' occupational exposure to antibiotic-resistant bacterial bioaerosols in the landfill. This study confirmed the multi-antibiotic resistant in bacterial bioaerosol in a landfill and in the surrounding area. Obtained mean concentrations of bacterial bioaerosols, as well as antibiotic-resistant in bacterial bioaerosol (A.R.B.), were high, especially for fine particles that may be a threat for human health. Results suggest the possible risk of antibiotic-resistance interchange between pathogenic and non-pathogenic species in the landfill facilities, thus promoting antibiotic multi-resistance genes spreading into the environment.
اظهر المزيد [+] اقل [-]Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau
2021
Zhang, Chao | Chen, Meilian | Kang, Shichang | Yan, Fangping | Han, Xiaowen | Gautam, Sangita | Hu, Zhaofu | Zheng, Huijun | Chen, Pengfei | Gao, Shaopeng | Wang, Pengling | Li, Yizhong
Carbonaceous particles play an important role in climate change, and an increase in their emission and deposition causes glacier melting in the Himalayas and the Tibetan Plateau (HTP). This implies that studying their basic characteristics is crucial for a better understanding of the climate forcing observed in this area. Thus, we investigated characteristics of carbonaceous particles at a typical remote site of southeastern HTP. Organic carbon and elemental carbon concentrations at this study site were 1.86 ± 0.84 and 0.18 ± 0.09 μg m⁻³, respectively, which are much lower than those reported for other frequently monitored stations in the same region. Thus, these values reflect the background characteristics of the study site. Additionally, the absorption coefficient per mass (α/ρ) of water-soluble organic carbon (WSOC) at 365 nm was 0.60 ± 0.19 m² g⁻¹, with the highest and lowest values corresponding to the winter and monsoon seasons, respectively. Multi-dimensional fluorescence analysis showed that the WSOC consisted of approximately 37% and 63% protein and humic-like components, respectively, and the latter was identified as the component that primarily determined the light absorption ability of the WSOC, which also showed a significant relationship with some major ions, including SO²⁻₄, K⁺, and Ca²⁺, indicating that combustion activities as well as mineral dust were two important contributors to WSOC at the study site.
اظهر المزيد [+] اقل [-]Elevated CO2 concentration affects survival, but not development, reproduction, or predation of the predator Hylyphantes graminicola (Araneae: Linyphiidae)
2021
Li, Wei | Zhao, Yao | Li, Yingying | Zhang, Shichang | Yun, Yueli | Cui, Jinjie | Peng, Yu
Elevated CO₂ concentrations can change the multi-level nutritional relationship of the ecosystem through the cascading effect of the food chain. To date, few studies have investigated the effects of elevated CO₂ concentration on the Araneae species through the tritrophic system. Hylyphantes graminicola (Araneae: Linyphiidae) is distributed widely in Asia and is a dominant predator in cotton fields. This study investigated chemical components in the food chain of cotton (Gossypium hirsutum)—cotton aphid (Aphis gossypii)—predator (H. graminicola) and compared the development, reproduction, and predation of H. graminicola under ambient (400 ppm) and elevated concentration of CO₂ (800 ppm). The results showed that the elevated CO₂ concentration increased the chemicals of cotton and cotton aphid, but it did not affect the nutrients, development, reproduction, and predation of the spider. However, the survival rate of the spider was significantly decreased in elevated CO₂. The results will further our understanding of the role of natural enemies in an environment with elevated CO₂ concentration.
اظهر المزيد [+] اقل [-]