خيارات البحث
النتائج 1861 - 1870 من 6,560
Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations النص الكامل
2020
Zhang, Kun | Yuan, Guanxiang | Werdich, Andreas A. | Zhao, Yanbin
The non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac are highly prescribed worldwide and their presence in aquatic system may pose a potential risk to aquatic organisms. Here, we systematically assessed their cardiovascular disruptive effects in zebrafish (Danio rerio) at environmentally relevant concentrations between 0.04 and 25.0 μg/L. Ibuprofen significantly increased the cardiac outputs of zebrafish embryos at actual concentrations of 0.91, 4.3 and 21.9 μg/L. It up-regulated the blood cell velocity, total blood flow and down-regulated the blood cell density at concentrations of 4.3 μg/L and higher. In comparison, diclofenac led to inhibition of spontaneous muscle contractions and decreased hatching rate of zebrafish embryos at the highest concentration (24.1 μg/L), while it had negligible effects on the cardiac physiology and hemodynamics. Transcriptional analysis of biomarker genes involved in cardiovascular physiology, such as the significantly up-regulated nppa and nkx2.5 expressions response to ibuprofen but not to diclofenac, is consistent with these observations. In addition, both ibuprofen and diclofenac altered the morphology of intersegmental vessels at high concentrations. Our results revealed unexpected cardiovascular functional alterations of NSAIDs to fish at environmental or slightly higher than surface water concentrations and thus provided novel insights into the understanding of their potential environmental risks.
اظهر المزيد [+] اقل [-]Selenium mitigates cadmium-induced crosstalk between autophagy and endoplasmic reticulum stress via regulating calcium homeostasis in avian leghorn male hepatoma (LMH) cells النص الكامل
2020
Zhang, Cong | Wang, Lili | Cao, Chang-Yu | Li, Nan | Talukder, Milton | Li, Jin-Long
Cadmium (Cd) is a toxic heavy metal and widespread in environment and food, which is adverse to human and animal health. Food intervention is a hot topic because it has no side effects. Selenium (Se) is an essential trace element, found in various fruits and vegetables. Many previous papers have described that Se showed ameliorative effects against Cd. However, the underlying mechanism of antagonistic effect of Se against Cd-induced cytotoxicity in avian leghorn male hepatoma (LMH) cells is unknown, the molecular mechanism of Se antagonistic effect on Cd-induced and calcium (Ca²⁺) homeostasis disorder and crosstalk of ER stress and autophagy remain to be explored. In order to confirm the antagonistic effect of Se on Cd-induced LMH cell toxicity, LMH cells were treated with CdCl₂ (2.5 μM) and Na₂SeO₃ (1.25 and 2.5 μM) for 24 h. In this study, Cd exposure induced cell death, disrupted intracellular Ca²⁺ homeostasis and Ca²⁺ homeostasis related regulatory factors, interfered with the cycle of cadherin (CNX)/calreticulin (CRT), and triggered ER stress and autophagy. Se intervention inhibited Cd-induced LDH release and crosstalk of ER stress and autophagy via regulating intracellular Ca²⁺ homeostasis. Moreover, Se mitigated Cd-induced Intracellular Ca²⁺ overload by Ca²⁺/calmodulin (CaM)/calmodulin kinase IV (CaMK-IV) signaling pathway. Herein, CNX/CRT cycle played a critical role for the protective effect of Se on Cd-induced hepatotoxicity. Based on these findings, we demonstrated that the application of Se is beneficial for prevention and alleviation of Cd toxicity.
اظهر المزيد [+] اقل [-]The abatement of acid rain in Guizhou province, southwestern China: Implication from sulfur and oxygen isotopes النص الكامل
2020
Zelong Yan, | Xiaokun Han, | Lang, Yunchao | Guo, Qinjun | Li, Siliang
The high frequency of acid rain in southern China has captured public and official concern since 1980s. Subsequently, gas emission reduction measures have been implemented to improve the air quality. Variations in SO₂ emission intensities can influence the sulfur and oxygen isotopic compositions of sulfate in rainwater, since atmospheric sulfate is mainly formed via the oxidation of sulfur gases from natural and anthropogenic sources. To evaluate the impacts of emission reduction measures on atmospheric sulfate, the seasonal and long-term trends in stable isotopic compositions of sulfate in rainwater in Guizhou province, southwestern China have been investigated based on rainwater samples collected from June 2016 to June 2018 and literature investigation (2000–2010).The results reveal that coal combustion remains a major contributor to sulfate in rainwater, although its SO₂ emission has significantly decreased over the past two decades. The δ³⁴Sₛᵤₗfₐₜₑ and δ¹⁸Oₛᵤₗfₐₜₑ values in rainwater are negatively correlated and have significant seasonal changes. The seasonality in δ³⁴Sₛᵤₗfₐₜₑ has been interpreted as due to the changes in contributions of dimethyl sulfide and coal combustion, while the seasonal pattern of δ¹⁸Oₛᵤₗfₐₜₑ is consistent with that of δ¹⁸Owₐₜₑᵣ values, indicating sulfate in rainwater is mainly formed by heterogeneous oxidation of SO₂. Combined with the data from previous studies (Xiao and Liu, 2002; Liu, 2007; Xiao et al., 2009; Xiao et al., 2014), we found that the volume weighted mean δ³⁴S values of sulfate in rainwater in Guizhou province show a marked increase between 2001 and 2018, indicating that the ³⁴S-depleted SO₂ emission from coal combustion has declined during this period. Furthermore, the synchronous changes in δ³⁴S values, sulfate concentration and pH values of rainwater suggest that the frequency of acid rain in Guizhou province has dropped over the past two decades, which is likely to result from the emission reduction measures taken in Guizhou province.
اظهر المزيد [+] اقل [-]Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes النص الكامل
2020
Weber, Collin Joel | Opp, Christian
Plastic, and especially microplastic, contamination of soils has become a novel research field. After the detection of microplastics in soils, spatial distribution and dynamics are still unknown. However, the potential risks associated with plastic particles in soils cannot be sufficiently assessed without knowledge about the spatial distribution of these anthropogenic materials. Based on a spatial research approach, including soil surveys, this study quantified the mesoplastic (MEP, > 5.0 mm) and coarse microplastics (CMP, 2.0–5.0 mm) content of twelve floodplain soils. At four transects in the catchment area of the Lahn river (Germany), soils down to a depth of 2 m were examined for plastic content for the first time. MEP and CMP were detected through visual examination after sample preprocessing and ATR-FTIR analyses. Average MEP and CMP concentrations range between 2.06 kg⁻¹ (±1.55 kg⁻¹) and 1.88 kg⁻¹ (±1.49 kg⁻¹) with maximal values of 5.37 MEP kg⁻¹ to 8.59 CMP kg⁻¹. Plastic particles are heterogeneously distributed in samples. Both plastic size classes occur more frequently in topsoils than in soil layers deeper than 30 cm. The maximal depth of CMP occurrence lies between 75 and 100 cm. Most common CMP polymer type was PE-LD, followed by PP and PA. MEP and CMP particles occur frequently at near channel sides and more often on riparian strips or grassland than on farmland. Vertical distribution of CMP indicates anthropogenic relocation in topsoils and additional deep displacement through natural processes like preferential flow paths or bioturbation. By comparing sedimentation rates of the river with the maximum age of plastic particles, sedimentation as a deposition process of plastic in floodplains becomes probable. From our findings, it can be concluded that an overall widespread but spatial heterogenous contamination occurs in floodplain soils. Additionally, a complex plastic source pattern seems to appear in floodplain areas.
اظهر المزيد [+] اقل [-]Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance النص الكامل
2020
Qiu, Zhen | Tang, Jiawen | Chen, Jinhuan | Zhang, Qiuzhuo
Biochar sequesters cadmium (Cd) by immobilisation, but the process is often less effective in field trials than in the laboratory. Therefore, the involvement of soil components should be considered for predicting field conditions that could potentially improve this process. Here, we used biochar derived from Spartina alterniflora as the amendment for Cd-contaminated soil. In simulation trials, a mixture of kaolin, a representative soil model component, and S. alterniflora-derived biochar immobilised Cd by forming silicon-aluminium-Cd-containing complexes. Interestingly, the biochar recalcitrance index value increased from 48% to 53%–56% because of the formation of physical barriers consisting of kaolinite minerals and Cd complexes. Pot trials were performed using Brassica chinensis for evaluating the effect of S. alterniflora-derived biochar on plant growth in Cd-contaminated soil. The bio-concentration factor values in B. chinensis were 24%–31% after soil remediation with biochar than in control plants. In summary, these results indicated that soil minerals facilitated Cd sequestration by biochar, which reduced Cd bioavailability and improved the recalcitrance of this soil amendment. Thus, mechanisms for effective Cd remediation should include biochar-soil interactions.
اظهر المزيد [+] اقل [-]Phosphorus is more effective than nitrogen in restoring plant communities of heavy metals polluted soils النص الكامل
2020
Huang, Jingxin | Wang, Chenjiao | Qi, Lanlan | Zhang, Xiaole | Tang, Guangmei | Li, Lei | Guo, Jiahang | Jia, Yujing | Dou, Xiaolin | Lu, Meng
Heavy metal pollution is widespread, and has an increasing trend in some countries and regions. It can be easily accumulated in plants, leading to plant species loss and affecting plant community composition. Artificial restoration can conserve plant diversity in contaminated soils and accelerate the recovery of polluted ecosystems. The application of nitrogen (N) and phosphorus (P) is inexpensive and convenient, which can increase the resistance of plants to adversity and promote the growth of plants in heavy metal polluted soils. In order to examine the effect of N and P nutrition on the conservation of plant community, we conducted a comparison experiment in greenhouse using soil with low N and P concentration, and set five treatments: C (soil with no heavy metals and fertilizer addition), H (soil with heavy metals addition but with no fertilizer), HN (soil with heavy metals and N addition), HP treatment(soil with heavy metals and P addition), HNP treatment (soil with heavy metals, N and P addition). Our results showed that heavy metal pollution reduced plant species by 300%, and significantly decreased plant diversity (P < 0.05). N addition increased the richness of plant species and increased the dominance of Euphorbia peplus, but had no significant effect on plant diversity and community structure, while reduced the evenness of plant species. P addition of HP and HNP treatments restored plant species richness and increased plant diversity under heavy metal pollution. The plant community structures of these two treatments were more similar to that of group C. Compared with N addition, P addition had a better performance to restoring the species composition and relative dominance of plant communities. Our results provided a guidance for the restoration of plant communities and the conservation of plant species in low N and P concentration soils with the context of heavy metal pollution.
اظهر المزيد [+] اقل [-]How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil النص الكامل
2020
Qin, Xuechao | Guo, Shufang | Zhai, Limei | Pan, Junting | Khoshnevisan, Benyamin | Wu, Shuxia | Wang, Hongyuan | Yang, Bo | Ji, Jinghong | Liu, Hongbin
The excessive application of manure has caused a high load of phosphorus (P) in the North China Plain. Having an understanding of how manure application affects soil P changes and its transport between different soil layers is crucial to reasonably apply manure P and reduce the associated loss. Based on our 28-year field experiments, the compositions and changes of P species and the risk of P loss under excessive manure treatments were investigated, i.e., no fertilizer (CK), mineral fertilizer NPK (NPK), NPK plus 22.5 t ha⁻¹ yr⁻¹ swine manure (LMNPK), and NPK plus 33.75 t ha⁻¹ yr⁻¹ swine manure (HMNPK). Manure application increased the content of orthophosphate and myo-inositol hexaphosphate (myo-IHP), especially the orthophosphate content exceeded 95%. The amount of orthophosphate in manure and the conversion of organic P to inorganic P in soil were the main reasons for the increased soil orthophosphate. Compared with NPK treatment, soil microbial biomass phosphorus and alkaline phosphatase activity in LMNPK and HMNPK treatments significantly increased. Compared with NPK treatment, a high manure application rate under HMNPK treatment could increase the abundance of organic P-mineralization gene phoD by 60.0% and decrease the abundance of inorganic P-solubilization gene pqqC by 45.9%. Due to the continuous additional manure application, soil P stocks significantly increased under LMNPK and HMNPK treatments. Furthermore, part of the P has been leached to the 60–80 cm soil layer. Segmented regression analysis indicated that CaCl₂–P increased sharply when Olsen-P was higher than 25.1 mg kg⁻¹, however the content of Olsen-P did not exceed this value until 10 years after consecutive excessive manure application. In order to improve soil P availability and decrease the risk of P loss, the manure application rate should vary over time based on soil physicochemical conditions, plants requirements, and P stocks from previous years.
اظهر المزيد [+] اقل [-]Formation and mobilization of methylmercury across natural and experimental sulfur deposition gradients النص الكامل
2020
Åkerblom, Staffan | Nilsson, Mats B. | Skyllberg, Ulf | Bjørn, Erik | Jonsson, Sofi | Ranneby, Bo | Bishop, Kevin
We investigated the influence of sulfate (SO₄²⁻) deposition and concentrations on the net formation and solubility of methylmercury (MeHg) in peat soils. We used data from a natural sulfate deposition gradient running 300 km across southern Sweden to test the hypothesis posed by results from an experimental field study in northern Sweden: that increased loading of SO₄²⁻ both increases net MeHg formation and redistributes methylmercury (MeHg) from the peat soil to its porewater. Sulfur concentrations in peat soils correlated positively with MeHg concentrations in peat porewater, along the deposition gradient similar to the response to added SO₄²⁻ in the experimental field study. The combined results from the experimental field study and deposition gradient accentuate the multiple, distinct and interacting roles of SO₄²⁻ deposition in the formation and redistribution of MeHg in the environment.
اظهر المزيد [+] اقل [-]Feasible and effective control strategies on extreme emissions of chlorinated persistent organic pollutants during the start-up processes of municipal solid waste incinerators النص الكامل
2020
Cheruiyot, Nicholas Kiprotich | Yang, Hsi-Hsien | Wang, Lin-Chi | Lin, Chun-Chi
A typical two-day start-up of municipal solid waste incinerators (MSWIs) can yield polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) and polychlorinated biphenyl (PCB) emission quantities around 10 times higher than those from an entire year of normal operations, as measured in this study. Thus, we tested specific control strategies for inhibiting the formation of chlorinated persistent organic pollutants (Cl-POPs), namely, extensively cleaning the ash accumulated beneath the furnace bed of the combustion chamber and deposited on the walls of the superheater and economizer and shortening the residence time of the flue gas in the optimal temperature window for Cl-POP formation. Also, we advanced the injection times of the activated carbon and lime slurry to lower Cl-POP emissions during start-up. Our findings show that these strategies were highly effective and reduced the Cl-POP emissions by > 98%, most of which (96.4–98.2%) was attributable to inhibiting formation. In summary, the proposed control strategies require no modifications to existing air pollution control devices, have little influence on operational cost, and are effective and feasible for the majority of MSWIs.
اظهر المزيد [+] اقل [-]Urban noise restricts, fragments, and lightens sleep in Australian magpies النص الكامل
2020
Connelly, Farley | Johnsson, Robin D. | Aulsebrook, Anne E. | Mulder, Raoul A. | Hall, Michelle L. | Vyssotski, Alexei L. | Lesku, John A.
Urban areas are inherently noisy, and this noise can disrupt biological processes as diverse as communication, migration, and reproduction. We investigated how exposure to urban noise affects sleep, a process critical to optimal biological functioning, in Australian magpies (Cracticus tibicen). Eight magpies experimentally exposed to noise in captivity for 24-h spent more time awake, and less time in non-rapid eye movement (non-REM) and REM sleep at night than under quiet conditions. Sleep was also fragmented, with more frequent interruptions by wakefulness, shorter sleep episode durations, and less intense non-REM sleep. REM sleep was particularly sensitive to urban noise. Following exposure to noise, magpies recovered lost sleep by engaging in more, and more intense, non-REM sleep. In contrast, REM sleep showed no rebound. This might indicate a long-term cost to REM sleep loss mediated by noise, or contest hypotheses regarding the functional value of this state. Overall, urban noise has extensive, disruptive impacts on sleep composition, architecture, and intensity in magpies. Future work should consider whether noise-induced sleep restriction and fragmentation have long-term consequences.
اظهر المزيد [+] اقل [-]