خيارات البحث
النتائج 1871 - 1880 من 7,989
Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study
2021
Conte, A. | Otu-Larbi, F. | Alivernini, A. | Hoshika, Y. | Paoletti, E. | Ashworth, K. | Fares, S.
Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone on a Holm oak forest in central Italy, four flux-based ozone impact response functions were implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO₂. To evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different detoxifying thresholds ranging between 0 and 5 nmol O₃ m⁻² s⁻¹ were tested.The use of species-specific rather than more general response functions based on plant functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case of linear response functions, a threshold of 1 nmol m⁻² s⁻² produced the best results for simulations of the whole year, although the tolerance to ozone changed seasonally, with higher tolerance (5 nmol m⁻² s⁻¹ or no ozone impact) for Winter and Spring and lower thresholds in Summer and Fall (0–1 nmol m⁻² s⁻¹). A “dynamic threshold” obtained by extracting the best daily threshold values from a range of different simulations helped reduce model overestimation of GPP by 213 g C m⁻² y⁻¹ and reduce RMSE up to 7.7%. Finally, a nonlinear ozone correction based on manipulative experiments produced the best results when no detoxifying threshold was applied (0 nmol O₃ m⁻² s⁻¹), suggesting that nonlinear functions fully account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points to the need for seasonal thresholds to predict ozone damage and highlights the importance of performing more species-specific manipulative experiments to derive response functions for a broad range of plant species.
اظهر المزيد [+] اقل [-]Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city
2021
Luo, Qing | Ren, Yuxuan | Sun, Zehang | Li, Yu | Li, Bing | Yang, Sen | Zhang, Wanpeng | Hu, Yuanan | Cheng, Hefa
Although already eliminated in most industrial processes, mercury, as an essential ingredient in all energy-efficient lighting technologies, is still used in fluorescent lamp manufacturing. This study was conducted to investigate the atmospheric pollution caused by fluorescent lamp production and assess the associated public health risk in a large industrial and commercial city of south China, Zhongshan, which is a major production hub of lighting products. Concentrations of total gaseous mercury (TGM) in the atmosphere were measured over a total of 342 sites in the industrial, commercial, and residential areas. The average levels of TGM in the industrial, commercial, and residential areas prior to the landing of a typhoon were 12 ± 11, 3.6 ± 2.1, and 2.7 ± 1.3 ng⋅m⁻³, respectively. TGM concentrations in the industrial areas exhibited significant diurnal variation, with levels in the working hours being much higher than those in the non-working hours, which indicates that the high atmospheric mercury concentrations were contributed by local emissions, instead of regional transport. Most fluorescent lamp manufacturing activities in the city were shut down during a typhoon event, which resulted in a significant reduction in the average TGM level (down to 1.6 ± 1.8 ng⋅m⁻³) and rendered the difference in the average TGM levels in the industrial areas no longer significant between the working and non-working hours. Elevated TGM levels (up to 49 ng⋅m⁻³) were found near clusters of small-scale fluorescent lamp workshops in both industrial and commercial areas, which is indicative of significant emissions of mercury vapor resulting from obsolete equipment and production technologies. No significant non-carcinogenic risk was found for the general residents in the sampling area over the study period, while the risk for the workers in the fluorescent lamp manufacturing facilities and workshops could be higher. These findings indicate that fluorescent lamp manufacturing in the developing countries is a major source of atmospheric mercury.
اظهر المزيد [+] اقل [-]Blood cadmium and physical function limitations in older adults
2021
García-Esquinas, Esther | Téllez-Plaza, María | Pastor-Barriuso, Roberto | Ortolá, Rosario | Olmedo, Pablo | Gil, Fernando | López-García, Esther | Navas-Acien, Ana | Rodríguez-Artalejo, Fernando
Cadmium (Cd) is a toxic metal found in tobacco, air and food. Recent cross-sectional studies have suggested that Cd negatively impacts physical performance, but the prospective association is uncertain.We used data from 2548 older adults from the Seniors-ENRICA II cohort in Madrid, Spain. Whole blood Cd levels were measured at baseline using inductively coupled plasma-mass spectrometry. At baseline (2017) and follow-up (2019), overall physical function was evaluated using the physical component summary (PCS) of the SF 12-Item Health questionnaire, lower-extremity performance with the Short Physical Performance Battery (SPPB), muscle weakness with a hand dynamometer, and frailty with a Deficit Accumulation index. Mobility limitations and disability in instrumental activities of daily living (IADL) were ascertained with standardized questionnaires. Analyses were adjusted for relevant confounders, including tobacco smoke, number of cigarettes smoked per day and time since cessation in former smokers.In cross-sectional analyses, odds ratios (95% confidence interval) per two-fold increase in blood Cd were 1.16 (1.03; 1.31) for low PCS scores, 1.08 (0.97; 1.20) for impaired lower-extremity performance, 1.10 (0.98; 1.23) for low grip strength, 1.11 (1.02; 1.20) for mobility limitations, 1.16 (1.02; 1.31) for frailty, and 1.26 (1.08; 1.47) for IADL disability. In longitudinal analyses, corresponding hazard ratios were 1.25 (1.03; 1.51) for low PCS scores, 1.14 (1.03; 1.27) for impaired lower-extremity performance, 1.02 (0.92; 1.13) for low grip strength, 1.03 (0.91; 1.16) for mobility limitations, and 1.16 (1.00; 1.35) for frailty. All the associations where consistent when current smokers were excluded from the analyses.Our results support the role of Cd as a risk factor for physical function impairments in older adults.
اظهر المزيد [+] اقل [-]Relation between organophosphate pesticide metabolite concentrations with pesticide exposures, socio-economic factors and lifestyles: A cross-sectional study among school boys in the rural Western Cape, South Africa
2021
Molomo, Regina Ntsubise | Basera, Wisdom | Chetty-Mhlanga, Shala | Fuhrimann, Samuel | Mugari, Mufaro | Wiesner, Lubbe | Röösli, Martin | Dalvie, Mohamed Aqiel
Evidence on the relationship between lifestyle, socio-economic factors and pesticide exposure and urinary concentrations of organophosphate (OP) pesticide metabolites among children is generally incomplete. This study investigated the relationship between socio-economic factors and reported pesticide exposures and the sum of three urinary concentrations of dialkyl phosphate metabolites (DAP) among boys living in the rural areas of the Western Cape, South Africa. Data was collected during a cross-sectional study of 183 boys from three agricultural intense areas. Measurements included a questionnaire on socio-economic and pesticide exposures and urinary DAP concentrations. Most boys (70%) lived on farms with a median age of 12 years (range: 5.0–19.5 years). Children aged >14 years had lower DAP urine concentrations (median = 39.9 ng/ml; β = −68.1 ng/ml; 95% CI: −136.8, 0.6) than children aged 9 years and younger (median = 107.0 ng/ml). DAP concentrations also varied significantly with area, with concentrations in the grape farming area, Hex River Valley (median = 61.8 ng/ml; β = −52.1; 95% CI: −97.9, −6.3 ng/ml) and the wheat farming area, Piketberg (median = 72.4 ng/ml; β = −54.2; 95% CI: 98.8, −9.7 ng/ml) lower than those in the pome farming area, Grabouw (median = 79.9 ng/ml). Other weaker and non-significant associations with increased DAP levels were found with increased household income, member of household working with pesticides, living on a farm, drinking water from an open water source and eating crops from the vineyard and or garden. The study found younger age and living in and around apple and grape farms to be associated with increased urinary DAP concentrations. Additionally, there were other pesticide exposures and socio-economic and lifestyle factors that were weakly associated with elevated urinary DAP levels requiring further study. The study provided more evidence on factors associated to urinary DAP concentrations especially in developing country settings.
اظهر المزيد [+] اقل [-]Prenatal exposure to perfluoroalkyl substances and cord plasma lipid concentrations
2021
Tian, Youping | Miao, Maohua | Ji, Honglei | Zhang, Xiaotian | Chen, Aimin | Wang, Ziliang | Yuan, Wei | Liang, Hong
The effect of prenatal exposure to perfluoroalkyl substances (PFAS) on lipid concentrations in newborns is unknown. Using data from the Shanghai-Minhang Birth Cohort Study, we prospectively assessed the health effects of prenatal exposure to individual and multiple PFAS on cord lipid concentrations. Maternal plasma samples collected at 12–16 weeks of gestation were analyzed for eleven PFAS, and cord blood samples were analyzed for lipids: total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). We used multiple linear regression models to evaluate the associations of each individual PFAS with each lipid parameter, and used Bayesian Kernel Machine Regression (BKMR) models to assess the overall and single-exposure effects of eight PFAS with the detection rate above 80% on cord lipid concentrations. In multiple linear regression models, for each unit increase in ln-transformed maternal concentrations of perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), and perfluorotridecanoic acid (PFTrDA), ln-transformed TC concentration decreased by 0.15 mg/dL (95% confidence interval (CI): −0.25, −0.05), 0.12 mg/dL (95% CI: −0.19, −0.05), 0.12 mg/dL (95% CI: −0.19, −0.05), and 0.05 mg/dL (95% CI: −0.09, −0.01), respectively, and ln-transformed HDL-C concentration decreased by 0.17 mg/dL (95% CI: −0.29, −0.05), 0.12 mg/dL (95% CI: −0.20, −0.03), 0.12 mg/dL (95% CI: −0.20, −0.03), and 0.06 mg/dL (95% CI: −0.11, −0.00), respectively. Statistically significant inverse associations were also observed between ln-transformed concentrations of PFDA, PFUdA, or PFTrDA and ln-transformed cord concentrations of TG and LDL-C. In BKMR models, the mixture of eight PFAS showed suggestively inverse association with all ln-transformed lipid concentrations, such that ln-transformed TC concentration of exposure to the 75th percentile of the mixture was 0.11 units (95% credible interval, −0.21, −0.01) lower than the 25th percentile exposure. Our findings indicated that prenatal exposure to PFAS may disrupt lipid metabolism in newborns.
اظهر المزيد [+] اقل [-]Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review
2021
Kumar, Saurav | Paul, Tapas | Shukla, S.P. | Kundan Kumar, | Karmakar, Sutanu | Bera, Kuntal Krishna | Bhushan kumar, Chandra
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
اظهر المزيد [+] اقل [-]Mercury, microcystins and Omega-3 polyunsaturated fatty acids in farmed fish in eutrophic reservoir: Risk and benefit assessment
2021
Jing, Min | Lin, Dan | Lin, Jing | Li, Qiuhua | Yan, Haiyu | Feng, Xinbin
Fish is an important source of nutritional omega-3 (n-3) polyunsaturated fatty acids, but it also readily accumulates toxic mercury (Hg) and microcystins (MC) in eutrophic aquatic systems. In China, farmed fish was widely consumed, and aquaculture has caused pervasive eutrophication of freshwater lakes, resulting in the increasing accumulation of MC in fish tissue. To assess the risk-benefit of consuming farmed fish, 205 fish samples of 10 primary species were collected from the eutrophic Wujiangdu (WJD) Reservoir, SW China. The contents of Hg, microcystin-RR (MC-RR), microcystin-LR (MC-LR), and polyunsaturated fatty acids (PUFA) in fish were analyzed. The results showed that THg and MeHg concentrations in all fish sampls were well below the safety limit (500 ng/g w.w) established by the Standardization Administration of China, with average values of 22.9 ± 22.8 and 6.0 ± 6.6 ng/g wet weight (w.w.), respectively. Average concentrations of MC-RR and MC-LR were 40 ± 80 and 50 ± 80 ng/g w.w., respectively. MC-RR and MC-LR concentrations in fish were significantly higher in silver carp and black carp than in perch and catfish (p < 0.05). In nutritional terms, average concentrations of n-3 PUFA and the eicosapentaenoic (EPA) + docosahexaenoic acids (DHA) of fish were 2.0 ± 2.5 and 1.4 ± 0.5 mg/g w.w., respectively. The risk-benefit assessment suggests that the n-3 PUFA benefits from consuming all farmed fish species in the WJD Reservoir outweigh the adverse effects of MeHg. However, except for perch, most fish species still pose a high MC-LR exposure risk that created a requirement for fish consumption advisories and monitoring. Consequently, more attention should be paid on the health risk of combined exposure to pollutants by aquatic product consumption.
اظهر المزيد [+] اقل [-]1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
اظهر المزيد [+] اقل [-]Lead accumulation in photosynthetic Euglena gracilis depends on polyphosphates and calcium
2021
Hernández-Garnica, M. | García-García, J.D. | Moreno-Sánchez, R. | Sánchez-Thomas, R.
Worldwide increasing levels of lead in water systems require the search for efficient ecologically friendly strategies to remove it. Hence, lead accumulation by the free-living algae-like Euglena gracilis and its effects on cellular growth, respiration, photosynthesis, chlorophyll, calcium, and levels of thiol- and phosphate-molecules were analyzed. Photosynthetic cells were able to accumulate 4627 mg lead/kgDW after 5 days of culture with 200 μM Pb²⁺. Nevertheless, exposure to 50, 100 and 200 μM Pb²⁺ for up to 8 days did not modify growth, viability, chlorophyll content and oxygen consumption/production. Enhanced biosynthesis of thiol molecules and polyphosphates, i.e. the two canonical metal ion chelation mechanisms in E. gracilis, was not induced under such conditions. However, in cells cultured in the absence of phosphate, lead accumulation and polyphosphate content markedly decreased, while culturing in the absence of sulfate did not modify the accumulation of this metal. In turn, the total amount of intracellular calcium slightly increased as the amount of intracellular lead increased, whereas under Ca²⁺ deficiency lead accumulation doubled. Therefore, the results indicated that E. gracilis is highly resistant to lead through mechanisms mediated by polyphosphates and Ca²⁺ and can in fact be classified as a lead hyperaccumulator microorganism.
اظهر المزيد [+] اقل [-]Mesoporous ball-milling iron-loaded biochar for enhanced sorption of reactive red: Performance and mechanisms
2021
Feng, Kanghong | Xu, Zibo | Gao, Bin | Xu, Xiaoyun | Zhao, Ling | Qiu, Hao | Cao, Xinde
In order to solve the low sorption capacity of pristine biochar for anionic pollutants, e.g., reactive red 120 (RR120), a novel mesoporous Fe-biochar composite was fabricated in this study by combination of Fe-loading and ball-milling methods. The ball-milling Fe-biochar composite could effectively remove RR120 by up to 90.1 mg g⁻¹ at pH of 7.5, and slightly alkaline condition was preferred. Adsorption kinetics showed that ball-milling Fe-biochar composite could quickly sorb RR120 with the rate constant (k₂) of 2.07 g mg⁻¹ min⁻¹ (pH = 7.5). Positive surface charge and large surface area were responsible for the outstanding removal performance of RR120 by ball-milling Fe-biochar composite: (1) The adscititious Fe would be converted to β-FeOOH during pyrolysis, which significantly improved the zeta potential of biochar and thus facilitated the electrostatic adsorption for RR120, which contributed to 42.3% and 85.5% at pH of 3 and 7.5, respectively; (2) Ball-milling effectively increased the specific surface area and uniformed the pore size distribution, which could provide more sorption sites and expedite the diffusion of RR120 molecules, shortening the time from several hours to less than 15 min. Findings of this study not only provide a feasible modification method for biochar to adsorb anionic pollutants efficiently and rapidly, but also help to reveal the roles of Fe-loading and ball-milling in enhancing adsorption capacity.
اظهر المزيد [+] اقل [-]