خيارات البحث
النتائج 1961 - 1970 من 3,240
Mixed sulfur–iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent النص الكامل
2015
Wang, Shenghui | Liang, Peng | Wu, Zhongqin | Su, Fengfeng | Yuan, Lulu | Sun, Yanmei | Wu, Qing | Huang, Xia
A mixed sulfur–iron particles packed reactor (SFe reactor) was developed to simultaneously remove total nitrogen (TN) and total phosphorus (TP) of the secondary effluent from municipal wastewater treatment plants. Low effluent TN (<1.5 mg/L) and TP (<0.3 mg/L) concentrations were simultaneously obtained, and high TN removal rate [1.03 g N/(L·d)] and TP removal rate [0.29 g P/(L·d)] were achieved at the hydraulic retention time (HRT) of 0.13 h. Kinetic models describing denitrification were experimentally obtained, which predicted a higher denitrification rate [1.98 g N/(L·d)] of SFe reactor than that [1.58 g N/(L·d)] of sulfur alone packed reactor due to the mutual enhancement between sulfur-based autotrophic denitrification and iron-based chemical denitrification. A high TP removal obtained in SFe reactor was attributed to chemical precipitation of iron particles. Microbial community analysis based on 16S rRNA revealed that autotrophic denitrifying bacteria Thiobacillus and Sulfuricella were the dominant genus, indicating that autotrophic denitrification played important role in nitrate removal. These results indicate that sulfur and iron particles can be packed together in a single reactor to effectively remove nitrate and phosphorus.
اظهر المزيد [+] اقل [-]A study to investigate fluoride contamination and fluoride exposure dose assessment in lateritic zones of West Bengal, India النص الكامل
2015
Samal, Alok C. | Bhattacharya, Piyal | Mallick, Anusaya | Ali, Md Motakabber | Pyne, Jagadish | Santra, Subhas C.
To assess the status of severity of fluoride contamination in lateritic Bankura and Purulia districts of West Bengal, concentrations of fluoride in different water sources and agricultural field soils were investigated. The fluoride content (mg/l) was observed to differ with aquifer depths: 0.19–0.47 in dug wells, 0.01–0.17 in shallow tube wells, and 0.07–1.6 in deep tube wells. Fluoride within the World Health Organization (WHO) prescribed range (1.0–1.5 mg/l) was estimated only in ~17 % of the total collected water samples while ~67 % showed <0.7 mg/l fluoride and thus may impede in the production and maintenance of healthy teeth and bones of the residents, especially children. Fluoride in water was found to be significantly correlated (r = 0.63) with pH. The exposure dose of fluoride (mg/kg/day) from drinking water in infants, children, and adults was estimated in the ranges 0.02–0.53, 0.01–0.24, and 0.01–0.14, respectively against the standard value of 0.05. A clear risk of dental fluorosis is apparent in infants and children of the study area. The fluoride in soil (55–399 mg/kg) was detected to be significantly correlated with the fluoride content in deep tube wells and soil pH (r = 0.56 and 0.71, respectively). The relationships of soil fluoride with total hardness and that with phosphate were not significant. There is a high possibility of bioaccumulation of fluoride from contaminated soil and water of the study area to cultivated crops. This will enhance the quantity of fluoride intake into human food chain in addition to drinking water pathway.
اظهر المزيد [+] اقل [-]Metallophytes for organic synthesis: towards new bio-based selective protection/deprotection procedures النص الكامل
2015
Grison, Claire M. | Velati, Alicia | Escande, Vincent | Grison, Claude
We propose for the first time using metal hyperaccumulating plants for the construction of a repertoire of protection and deprotection conditions in a concept of orthogonal sets. Protection of alcohol, carbonyl, carboxyl, and amino groups are considered. The ecocatalysts derived from metal-rich plants allow selective, mild, eco-friendly, and efficient protection or deprotection reactions. The selectivity is controlled by the choice of the metal, which is hyperaccumulated by the metallophyte.
اظهر المزيد [+] اقل [-]Anionic–nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil النص الكامل
2015
Shi, Zhentian | Chen, Jiajun | Liu, Jianfei | Wang, Ning | Sun, Zheng | Wang, Xingwei
Soil washing is an efficient remediation technique that enhances the solubility of polycyclic aromatic hydrocarbons (PAHs) in specific surfactant to remediate PAH-contaminated soil. This study evaluated the remediation efficiency of PAH-contaminated soil from a coke oven plant by comparing sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and Triton X-100 (TX100), as well as TX100-SDS and TX100-SDBS mixed surfactants. Results showed that SDS-TX100 and SDBS-TX100 had synergistic effects on PAH solubilization when surfactant concentrations were above their critical micelle concentration. Competitive effects of the three solubilized PAHs (phenanthrene with three rings, fluoranthene with four rings, and benzo[a]pyrene with five rings) with a particular anionic–nonionic mixed surfactant were investigated. PAHs with more rings were found to slightly decrease the solubility in surfactant solution of PAHs with fewer rings, whereas PAHs with fewer rings promoted the solubility in surfactant solution of PAHs with more rings. The removal ratios of PAHs during the remediation of actual PAH-contaminated soil were best improved by the anionic–nonionic mixed surfactant TX100-SDS (9:1), followed by TX100-SDS (8:2), TX100-SDS (7:3), TX100-SDBS (7:3), TX100, SDBS, and SDS. Therefore, anionic–nonionic mixed surfactants can help improve the remediation performance of PAHs based on their application in tests of cleaning actual PAH-contaminated soil from a coke oven plant.
اظهر المزيد [+] اقل [-]A review of iron species for visible-light photocatalytic water purification النص الكامل
2015
Jack, Russell S. | Ayoko, G. A. (Godwin A.) | Adebajo, Moses O. | Frost, Ray L.
Iron species are one of the least toxic and least expensive substances that are photocatalytic in the visible region of the spectrum. Therefore, this article focuses on iron-based photocatalysts sensitive to visible light. Photo-Fenton reactions are considered with respect to those assisted by and involve the in situ production of H₂O₂. The possible role that photoactive iron species play by interacting with natural organic matter in water purification in the natural environment is considered. The review also considered photosensitization by phthalocyanines and the potential role that layered double hydroxides may have not only as catalyst supports but also as photosensitizers themselves. Finally, photocatalytic disinfection of water is discussed, and the desirability of standardized metrics and experimental conditions to assist in the comparative evaluation of photocatalysts is highlighted.
اظهر المزيد [+] اقل [-]Solidification/stabilization and leaching behavior of PbCl2 in fly-ash hydrated silicate matrix and fly-ash geopolymer matrix النص الكامل
2015
Li, Yang | Gao, Xingbao | Wang, Qi | He, Jie | Yan, Dahai
Fly ash (FA) for reuse as a construction material is activated using two methods, to produce hydrated silicate and geopolymer gels. We investigated the solidification/stabilization and leaching behavior of PbCl₂in a geopolymer matrix (GM) and hydrated silicate matrix (HSM), based on FA as the source material, to evaluate the environmental and health risks. The GM and HSM synthetic conditions were 60 °C, 20 % relative humidity (RH), and 12 wt% (6 mol/L) NaOH, and 20 ± 2 °C, ≥90 % RH, and 30 wt.%, respectively, based on their compressive strength performances. X-ray diffraction (XRD) showed that Pb participated in hydration and geopolymerization, and was incorporated in the structural components of the hydrated silicate and geopolymer. In leaching experiments, the solidification/stabilization effects of Pb and Cl in the HSM and GM improved with increasing curing time. After long-term curing (28 days), the immobility of Pb in the GM was better than that in the HSM. Sodalite improved the Cl-stabilizing ability of the GM compared with that of the HSM. In static monolithic leaching experiments, HSM and GM had the same Pb-leaching behaviors. Based on the changes in the location of the neutral sphere layer with decreasing acid-neutralizing capacity, Pb release was divided into alkaline-release, stagnation, and acid-release stages. The neutral sphere layer contained the highest Pb concentration during permeation toward the block center from the block edge. This behavior regulation could also apply to other amphoteric metals immobilized by GMs and HSMs.
اظهر المزيد [+] اقل [-]Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity النص الكامل
2015
Roy, Kunal | Das, Rudra Narayan | Popelier, Paul L. A.
Predictive toxicology using chemometric tools can be very useful in order to fill the data gaps for ionic liquids (ILs) with limited available experimental toxicity information, in view of their growing industrial uses. Though originally promoted as green chemicals, ILs have now been shown to possess considerable toxicity against different ecological endpoints. Against this background, quantitative structure-activity relationship (QSAR) models have been developed here for the toxicity of ILs against the green algae Scenedesmus vacuolatus using computed descriptors with definite physicochemical meaning. The final models emerged from E-state indices, extended topochemical atom (ETA) indices and quantum topological molecular similarity (QTMS) indices. The developed partial least squares models support the established mechanism of toxicity of ionic liquids in terms of a surfactant action of cations and chaotropic action of anions. The models have been developed within the guidelines of the Organization of Economic Co-operation and Development (OECD) for regulatory QSAR models, and they have been validated both internally and externally using multiple strategies and also tested for applicability domain. A preliminary attempt has also been made, for the first time, to develop interspecies quantitative toxicity-toxicity relationship (QTTR) models for the algal toxicity of ILs with Daphnia toxicity, which should be interesting while predicting toxicity of ILs for an endpoint when the data for the other are available.
اظهر المزيد [+] اقل [-]Ecological risk assessment and sources of heavy metals in sediment from Daling River basin النص الكامل
2015
Zhao, Lei | Mi, Dong | Chen, Yifu | Wang, Luo | Sun, Yeqing
To investigate the distribution, source, and ecological risk of heavy metals in Daling River basin, 28 surface sediments collected in this region were analyzed by experimental and theoretical methods. Seven heavy metals, including Pb, Cr, Hg, Cu, As, Cd, and Zn, were detected in all samples. Monte Carlo simulation was used to assess the ecological risks of these heavy metals. It was found that the pollution of Cd was the most serious; the ecological risks in Daling River and Bohai Bay were significantly higher than those in estuary, Bohai Sea, and wetland, but overall, the ecological risks of these heavy metals were low to aquatic organisms in Daling River basin at present. Correlation analysis, principal component analysis, and cluster analysis showed that these heavy metals might originate from the same pollution sources located near Daling River and Bohai Bay.
اظهر المزيد [+] اقل [-]Surfactants in atmospheric aerosols and rainwater around lake ecosystem النص الكامل
2015
Razak, Intan Suraya | Latif, Mohd Talib | Jaafar, Shoffian Amin | Khan, Md Firoz | Mushrifah Idris,
This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F⁻, Cl⁻, NO₃⁻, and SO₄²⁻) and the Nessler Method was used to obtain the NH₄⁺concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93 %) and biomass burning (2 to 22 %).
اظهر المزيد [+] اقل [-]Evaluation and application of organic micro-pollutants (OMPs) as indicators in karst system characterization النص الكامل
2015
Reh, Roland | Licha, Tobias | Nödler, Karsten | Geyer, Tobias | Sauter, Martin
This study presents chances and challenges associated with the application of organic micro-pollutants (OMPs) as indicators in karst system characterization. The methodology and options of possible indications were evaluated based on the interpretation of the spatial distribution of 54 compounds in groundwater in combination with a complex geological setting consisting of multiple aquifer horizons and tectonic faults. A high variety of OMPs are released mainly in an urban area leading to concentrations of several nanograms per liter up to micrograms per liter, which are detectable using a high-performance liquid chromatography with subsequent tandem mass spectrometry (HPLC-MS/MS) method. Since characteristic patterns of spatial distribution were repeatedly observed during a 2-year observation period, important criteria of the aforementioned indicator application are fulfilled. Triazoles, compounds with recent high emission rates, could be successfully applied for the identification of flow directions and the delineation of catchment areas. Concentrations and the number of OMPs are believed to be dependent on properties of covering rock layers. Therefore, OMPs can also be used as a validation tool for vulnerability mapping. Compounds, such as triazines, persistent in the system for more than two decades, demonstrate the interaction between different parts of the aquifer system and the hydraulic characteristics of a tectonic fault zone. Such indicator potentials complement those of artificial tracer tests. Point sources of OMPs and their impact on groundwater could be identified qualitatively. In combination with the interpretation of the geological setting, the distribution of OMPs provides essential information for the development of a conceptual hydrogeological model.
اظهر المزيد [+] اقل [-]