خيارات البحث
النتائج 1981 - 1990 من 8,088
Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition النص الكامل
2021
Li, Bintao | Huang, Shan | Wang, Haoming | Liu, Mengjuan | Xue, Sha | Tang, Darrell | Cheng, Wanli | Fan, Tinglu | Yang, Xiaomei
Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition النص الكامل
2021
Li, Bintao | Huang, Shan | Wang, Haoming | Liu, Mengjuan | Xue, Sha | Tang, Darrell | Cheng, Wanli | Fan, Tinglu | Yang, Xiaomei
Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w: w, size ranging 0.5–2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles’ effects on different stages of crops and soil quality.
اظهر المزيد [+] اقل [-]Effects of plastic particles on germination and growth of soybean (Glycine max) : A pot experiment under field condition النص الكامل
2021
Li, Bintao | Huang, Shan | Wang, Haoming | Liu, Mengjuan | Xue, Sha | Tang, Darrell | Cheng, Wanli | Fan, Tinglu | Yang, Xiaomei
Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w: w, size ranging 0.5–2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles’ effects on different stages of crops and soil quality.
اظهر المزيد [+] اقل [-]Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene controlled diets in Sparus aurata النص الكامل
2021
Alomar, Carme | Sanz-Martín, Marina | Compa, Montserrat | Rios-Fuster, Beatriz | Álvarez, Elvira | Ripolles, Vincent | Valencia, José María | Deudero, Salud
Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene controlled diets in Sparus aurata النص الكامل
2021
Alomar, Carme | Sanz-Martín, Marina | Compa, Montserrat | Rios-Fuster, Beatriz | Álvarez, Elvira | Ripolles, Vincent | Valencia, José María | Deudero, Salud
During the last years, ingestion of microplastics (MPs) has been quantified in marine species both with an ecological and commercial interest at sea and under experimental conditions, highlighting the importance to assess MP ingestion in commercially and aquaculture important species such as gilthead seabream (Sparus aurata) fish. In order to study the ingestion of MPs in a commercially valuable species, gilthead seabreams were exposed to an enriched diet with virgin and weathered low-density polyethylene (LDPE) pellets for three months followed by a detoxification period of one month of no exposure to MP enriched diets. Our results indicate that MP ingestion in these fishes increased with exposure time, and differences were found between treatments, showing the highest ingestion values after three months of exposure to MP enriched diets and in the weathered treatment. However, after one month of detoxification, no MPs were found in the gastrointestinal tracts of fish, reflecting no long-term retention of MPs in Sparus aurata digestive system. According to results from this study, exposure of fish to MP enriched diets does not affect fish size neither the Fulton’s condition index as both parameters increased with time in all treatments (control, virgin and weathered). Both carbon and nitrogen isotopic signatures decreased with fish size in all treatments which could be related to an increase of nitrogen deposition efficiency in fish muscle with a high protein assimilation during the first months of Sparus aurata.
اظهر المزيد [+] اقل [-]Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene controlled diets in Sparus aurata* النص الكامل
2021
Alomar, Carme | Sanz-Martín, Marina | Compa, Montserrat | Ríos-Fuster, Beatriz | Álvarez, Elvira | Ripolles, Vincent | Valencia, José María | Deudero, Salud | Ministerio de Ciencia, Innovación y Universidades (España) | Agencia Estatal de Investigación (España)
During the last years, ingestion of microplastics (MPs) has been quantified in marine species both with an ecological and commercial interest at sea and under experimental conditions, highlighting the importance to assess MP ingestion in commercially and aquaculture important species such as gilthead seabream (Sparus aurata) fish. In order to study the ingestion of MPs in a commercially valuable species, gilthead seabreams were exposed to an enriched diet with virgin and weathered low-density polyethylene (LDPE) pellets for three months followed by a detoxification period of one month of no exposure to MP enriched diets. Our results indicate that MP ingestion in these fishes increased with exposure time, and differences were found between treatments, showing the highest ingestion values after three months of exposure to MP enriched diets and in the weathered treatment. However, after one month of detoxification, no MPs were found in the gastrointestinal tracts of fish, reflecting no long-term retention of MPs in Sparus aurata digestive system. According to results from this study, exposure of fish to MP enriched diets does not affect fish size neither the Fulton’s condition index as both parameters increased with time in all treatments (control, virgin and weathered). Both carbon and nitrogen isotopic signatures decreased with fish size in all treatments which could be related to an increase of nitrogen deposition efficiency in fish muscle with a high protein assimilation during the first months of Sparus aurata. © 2021 Elsevier Ltd. All rights reserved. | This study was funded by the Aquaculture derived plastics: Impacts and effects in marine food webs (ACUIPLASTIC) project from the National Program of Investigation, Development and Innovation orientated towards challenges of society from the Spanish Government (grant number CTM 2017-88332-R). The authors acknowledge financial support from the Spanish State Research Agency (AEI) and the Ministry of Science, Innovation and Universities (MICIU) to support the Thematic Network of Excellence (NET4SEA) on emerging contaminants in marine settings (CTM 2017-90890-REDT, MICIU/AEI/FEDER, EU). F. Alarcón from the Biology and Geology department of the Escuela Polítecnica Superior of the University of Almería for MPs enriched diet preparation. Authors want to acknowledge that M. Compa was supported by an FPI Fellowship from Conselleria d’Innovació, Recerca i Turisme of the regional Government of the Balearic Islands co-financed by the European Social Fund as part of the FSE 2014–2020 operational program. E. Álvarez was supported by a Personal Técnico de Apoyo contract (PTA 2015-10829-I) funded by the Spanish Ministry of Economy and Competitiveness. Authors want to thank the four anonymous reviewers for the constructive revision. | Peer reviewed
اظهر المزيد [+] اقل [-]Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment النص الكامل
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara
Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment النص الكامل
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara
Two different methodologies were combined to evaluate the risks that antibiotics can pose in the environment; i) an effect-based methodology based on microbial growth inhibition and ii) an analytical method based on liquid-chromatography coupled to mass spectrometry (LC-MS). The first approach was adapted and validated for the screening of four antibiotic families, specifically macrolides/β-lactams, quinolones, sulfonamides and tetracyclines. The LC-MS method was applied for the identification and quantification of target antibiotics; then, the obtained results were combined with ecotoxicological data from literature to determine the environmental risk. The two methodologies were used for the analysis of antibiotics in water samples (wastewater, river water and seawater) and biofluids (fish plasma and mollusk hemolymph) in two monitoring campaigns undertaken in the Ebro Delta and Mar Menor Lagoon (both in the Mediterranean coast of Spain). Both approaches highlighted macrolides (azithromycin) and quinolones (ciprofloxacin and ofloxacin) as the main antibiotics in wastewater treatment plant (WWTP) effluents with potential risk for the environment. However, no risk for the aquatic life was identified in the river, lagoon and seawater as antibiotic levels were much lower than those in WWTP effluents. Fish from Ebro River were the organisms presenting the highest antibiotic concentration when compared with bivalves (mussels) from the Mediterranean Sea and gastropods (marine snails) from the Mar Menor Lagoon. The effect-based methodology successfully determined antibiotic risk in wastewater, but its applicability was less clear in environmental waters such as seawater, due to its high detection limits. Improving sample preconcentration could increase the method sensibility. Overall, combination of both methodologies provides comprehensive insights in antibiotic occurrence and risk associated in areas under study.
اظهر المزيد [+] اقل [-]Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment النص الكامل
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara | Ministerio de Economía y Competitividad (España) | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Two different methodologies were combined to evaluate the risks that antibiotics can pose in the environment; i) an effect-based methodology based on microbial growth inhibition and ii) an analytical method based on liquid-chromatography coupled to mass spectrometry (LC-MS). The first approach was adapted and validated for the screening of four antibiotic families, specifically macrolides/β-lactams, quinolones, sulfonamides and tetracyclines. The LC-MS method was applied for the identification and quantification of target antibiotics; then, the obtained results were combined with ecotoxicological data from literature to determine the environmental risk. The two methodologies were used for the analysis of antibiotics in water samples (wastewater, river water and seawater) and biofluids (fish plasma and mollusk hemolymph) in two monitoring campaigns undertaken in the Ebro Delta and Mar Menor Lagoon (both in the Mediterranean coast of Spain). Both approaches highlighted macrolides (azithromycin) and quinolones (ciprofloxacin and ofloxacin) as the main antibiotics in wastewater treatment plant (WWTP) effluents with potential risk for the environment. However, no risk for the aquatic life was identified in the river, lagoon and seawater as antibiotic levels were much lower than those in WWTP effluents. Fish from Ebro River were the organisms presenting the highest antibiotic concentration when compared with bivalves (mussels) from the Mediterranean Sea and gastropods (marine snails) from the Mar Menor Lagoon. The effect-based methodology successfully determined antibiotic risk in wastewater, but its applicability was less clear in environmental waters such as seawater, due to its high detection limits. Improving sample preconcentration could increase the method sensibility. Overall, combination of both methodologies provides comprehensive insights in antibiotic occurrence and risk associated in areas under study. | This work has received funding from the Spanish Ministry of Economy and Competitiveness through the PLAS-MED (CTM2017-89701-C3-2-R) project. Authors acknowledge the support from the Economy and Knowledge Department of the Catalan Government through Consolidated Research Group (ICRA-ENV 2017 SGR 1124 and 2017-SGR-1404-Water and Soil Quality Unit). The authors acknowledge the IEO & CSIC staff for their help in the sampling campaigns. Albert Serra-Compte acknowledges the FI-DGR research fellowship from the Catalan Government (2018FI_B2_00170) and the Nereus Cost Action grant. Sara Rodriguez-Mozaz acknowledges the Ramon y Cajal program (RYC-2014-16707) and Diana Álvarez-Muñoz the support of the project XENOMETABOLOMIC (CTM2015-73179-JIN) (AEI/FEDER/UE). Authors kindly acknowledge Generalitat DGPAM (Fisheries Department). The authors also acknowledge support from CERCA Programme/Generalitat de Catalunya. | Peer reviewed
اظهر المزيد [+] اقل [-]Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume النص الكامل
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume النص الكامل
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s⁻¹. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m⁻²), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm⁻³ (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s⁻¹) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna.
اظهر المزيد [+] اقل [-]Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume النص الكامل
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s−1. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m−2), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm−3 (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s−1) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna. | publishedVersion
اظهر المزيد [+] اقل [-]Microplastic retention by marine vegetated canopies: simulations with seagrass meadows in a hydraulic flume النص الكامل
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s-1. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m-2), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm-3 (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s-1) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna. | FCT: UIDB/04326/2020/ SFRH/BPD/119344/2016 | info:eu-repo/semantics/publishedVersion
اظهر المزيد [+] اقل [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
اظهر المزيد [+] اقل [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio النص الكامل
2021
Sánchez-Aceves, Livier M. | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies. | This study was made possible by financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT, Project 300727). | Peer reviewed
اظهر المزيد [+] اقل [-]Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress النص الكامل
2021
Le, T.T Yen | Nachev, Milen | Grabner, Daniel | Garcia, Miriam R. | Balsa-Canto, Eva | Hendriks, A Jan | Peijnenburg, Willie J.G.M. | Sures, Bernd
Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress النص الكامل
2021
Le, T.T Yen | Nachev, Milen | Grabner, Daniel | Garcia, Miriam R. | Balsa-Canto, Eva | Hendriks, A Jan | Peijnenburg, Willie J.G.M. | Sures, Bernd
Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na⁺/K⁺-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu²⁺ and Na ⁺ to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.
اظهر المزيد [+] اقل [-]Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress النص الكامل
2021
Le, T. T. Yen | Nachev, Milen | Grabner, Daniel | García, Miriam R. | Balsa-Canto, Eva | Hendriks, A. Jan | Peijnenburg, Willie J. G. M. | Sures, Bernd
10 pages, 2 figures, 3 tables | Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na+/K+-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu2+ and Na + to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation | This research was financed by the Deutsche Forschungsgemeinschaft (DFG), Germany (LE 3716/2-1) | Peer reviewed
اظهر المزيد [+] اقل [-]Polychlorinated biphenyls (PCBs) in the colostrum samples from the Yangtze River Region: Exposure profile and risk assessment النص الكامل
2021
Guo, Fangjie | Yin, Shanshan | Wang, Haiyan | Zhang, Jianyun | Liu, Yingxue | Aamir, Muhammad | Liu, Weiping
Polychlorinated biphenyls (PCBs) may transfer into the neonates through the placental transfer and via breastfeeding after the delivery, thus might be harmful to the infant. Sixty colostrum samples in the Yangtze River Region were collected to investigate the concentration, distribution pattern, and enantiomer characteristic of the PCB exposure. Among all samples, over 90% of pollutants were tetra-to hepta-chlorinated PCBs. The sum concentration of the PCB was 512 (IQR: 322–856) ng g⁻¹ lipid weight. Enantiomer fraction (EF) of PCB 95 and PCB 149 was found lower than the racemic value, while EFs of PCB 45 and PCB 136 were found higher and near-racemic state, respectively. The concentration pattern and enantiomeric properties of the PCBs indicated that the mothers from Mianyang had a recent exposure to PCBs. Among all samples, similar exposure and metabolic pathways of the PCB congeners were observed. PCB exposure showed no significant correlation with the birth outcome of the infants, but 43.3% of the infants have potential health risks via breastfeeding.
اظهر المزيد [+] اقل [-]Selective removal of arsenic in water: A critical review النص الكامل
2021
Weerasundara, Lakshika | Ok, Yong-Sik | Bundschuh, Jochen
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
اظهر المزيد [+] اقل [-]BPA modulates the WDR5/TET2 complex to regulate ERβ expression in eutopic endometrium and drives the development of endometriosis النص الكامل
2021
Xue, Wen | Yao, Xiong | Ting, Geng | Ling, Jin | Huimin, Liu | Yuan, Qiao | Chun, Zhou | Ming, Zhang | Yuanzhen, Zhang
Overexpression of estrogen receptor β (ERβ) in endometrium contributes to endometriosis (EM) pathogenesis. Trimethylation of the H3 lysine (K) 4 (H3K4me3) in promoters is strongly correlated with gene expression. This study aimed to explore the effects of bisphenol A (BPA) exposure on EM development from the perspective of the regulation of ERβ expression in eutopic endometrium via the H3K4me3-related epigenetic pathway. A mouse EM model was established to investigate the effects of BPA. Immortalized human normal endometrial stromal cells (iESCs) were cultured and treated with BPA to explore the underlying mechanism. Eutopic endometria from patients with or without EM were collected and analyzed. Results showed that BPA elevated ERβ expression in mouse eutopic endometrium and promoted lesion growth. BPA also promoted WD repeat domain 5 (WDR5) expression and upregulated H3K4me3 levels in the ERβ promoter and Exon 1. Further research indicated that WDR5 interacted with tet methylcytosine dioxygenase 2 (TET2), while BPA exposure enhanced the interaction between these two proteins, promoted the recruitment of the WDR5/TET2 complex to the ERβ promoter and Exon 1, and inhibited DNA methylation of CpG islands. The WDR5/TET2 interaction was essential for BPA-induced ERβ overexpression. Enhanced WDR5/TET2 interaction was also observed in eutopic endometria from EM patients. Further results showed that BPA upregulated WDR5 expression through the G protein-coupled estrogen receptor (GPER)-mediated PI3K/mTOR signaling pathway. In conclusion, our study suggests that BPA exposure promotes EM development by upregulating ERβ expression in eutopic endometrium via the WDR5/TET2-mediated epigenetic pathway.
اظهر المزيد [+] اقل [-]Spatiotemporal mapping and assessment of daily ground NO2 concentrations in China using high-resolution TROPOMI retrievals النص الكامل
2021
Wu, Sensen | Huang, Bo | Wang, Jionghua | He, Lijie | Wang, Zhongyi | Yan, Zhen | Lao, Xiangqian | Zhang, Feng | Liu, Renyi | Du, Zhenhong
Nitrogen dioxide (NO₂) is an important air pollutant that causes direct harms to the environment and human health. Ground NO₂ mapping with high spatiotemporal resolution is critical for fine-scale air pollution and environmental health research. We thus developed a spatiotemporal regression kriging model to map daily high-resolution (3-km) ground NO₂ concentrations in China using the Tropospheric Monitoring Instrument (TROPOMI) satellite retrievals and geographical covariates. This model combined geographically and temporally weighted regression with spatiotemporal kriging and achieved robust prediction performance with sample-based and site-based cross-validation R² values of 0.84 and 0.79. The annual mean and standard deviation of ground NO₂ concentrations from June 1, 2018 to May 31, 2019 were predicted to be 15.05 ± 7.82 μg/m³, with that in 0.6% of China’s area (10% of the population) exceeding the annual air quality standard (40 μg/m³). The ground NO₂ concentrations during the coronavirus disease (COVID-19) period (January and February in 2020) was 14% lower than that during the same period in 2019 and the mean population exposure to ground NO₂ was reduced by 25%. This study was the first to use TROPOMI retrievals to map fine-scale daily ground NO₂ concentrations across all of China. This was also an early application to use the satellite-estimated ground NO₂ data to quantify the impact of the COVID-19 pandemic on the air pollution and population exposures. These newly satellite-derived ground NO₂ data with high spatiotemporal resolution have value in advancing environmental and health research in China.
اظهر المزيد [+] اقل [-]