خيارات البحث
النتائج 21 - 30 من 5,154
Anthropogenic share of metal contents in soils of urban areas النص الكامل
2018
Fazeli, G. | Karbassi, A.R. | khoramnejadian, Sh. | Nasrabadi, T.
In the present investigation, 41 soil samples were subjected to single step chemical partitioning to assess the lithogenic and non-lithogenic portions of metals in Tehran's soils. The share of various studied metals in the anthropogenic portion ranges from as low as 0.2% to as high as 85% of bulk concentration. Geo-accumulation index (Igeo) showed that Cd falls within "heavily contaminated" soils. It might be inferred that Ni, Cu, Cr, Zn, Co and Ca fall within "Deficient to minimal" class in accordance with enrichment factor (EF) classification.. Enrichment factor values (to some extents) match with the chemical partition studies results (except for Ni and Cr). The very low Ca content of soil samples could be indicative of low biological productivity in the Tehran's soil. Also the very low concentrations of Mn could be indicative of reducing environment in soils of Tehran.
اظهر المزيد [+] اقل [-]Wastewater Remediation via Modified Activated Carbon: A Review النص الكامل
2018
Hasan, M.B. | Hammood, Z.A.
The magnetic derivative of Activated Carbon (AC) is a promising new technique to isolate and recover consumed adsorbent. In this light, the current research seeks to summarise the magnetisation rout of AC and its applications, while identifying both benefits and drawbacks of different synthetic routs. Several methods, such as chemical co-precipitation, hydrothermal, impregnation, ball milling, and one-step synthetic routs, have been studied by previous researchers. Among these methods, chemical co-precipitation is simple, extensively adapted for Magnetic Activated Carbon (MAC) syntheses. In general, the magnetic derivatives of AC show a reduction in the surface area and pore volume, due to introduction of magnetic nanoparticles. Magnetisation enhances contaminants' adsorption, despite the reduction in surface area. It allows elimination of contaminants, barely treated by pristine AC due to the introduction of magnetic materials. Developments in synthetic procedures could overcome the destructive influence of acidity on MAC, providing a shield against it. MAC has been used in several applications, including organic and inorganic contaminant removal. Medically, MAC is used to lead drugs to a specific organ and, thus, reduce damages to non-affected organs. It can be said that the preparation method did not obstruct MAC application for specific contaminant adsorption. MAC regeneration has been reported for several sorption cycles, making the process sustainable and cost-effective. Future work could further develop the synthetic route and enhance the characteristics of the produced composite. It also may consider the influence of iron on the treated water, depending on its proposed usage.
اظهر المزيد [+] اقل [-]Analytical solutions of one-dimensional Advection equation with Dispersion coefficient as function of Space in a semi-infinite porous media النص الكامل
2018
Yadav, R. R. | Kumar, L. K.
The aim of this study is to develop analytical solutions for one-dimensional advection-dispersion equation in a semi-infinite heterogeneous porous medium. The geological formation is initially not solute free. The nature of pollutants and porous medium are considered non-reactive. Dispersion coefficient is considered squarely proportional to the seepage velocity where as seepage velocity is considered linearly spatially dependent. Varying type input condition for multiple point sources of arbitrary time-dependent emission rate pattern is considered at origin. Concentration gradient is considered zero at infinity. A new space variable is introduced by a transformation to reduce the variable coefficients of the advection-dispersion equation into constant coefficients. Laplace Transform Technique is applied to obtain the analytical solutions of governing transport equation. Obtain results are shown graphically for various parameter and value on the dispersion coefficient and seepage velocity. The developed analytical solutions may help as a useful tool for evaluating the aquifer concentration at any position and time.
اظهر المزيد [+] اقل [-]Ecological risk assessment of heavy metals in Hurghada coastal sediment, Red Sea, Egypt النص الكامل
2018
Abdelkader, A. I. | Abuelregal, M. | El-Metwally, M.E. | Hassaan, M. A. | Sanad, E. F.
Twenty samples of Ø3, Ø4 and Ø5 (fine fractions) were collected from four coastal areas (Sheraton, Magawish, Marina and Al mina) in Hurghada, Egypt. Total organic matter (TOM), total organic carbon (TOC) and heavy metals were estimated in the recommended fractions. Results showed that Fe and Pb recorded the highest concentrations with 71.7 and 39 mg/kg respectively. Marina area fractions has the highest carbonate content varied between 50.7 and 65.7 while Magawish area fractions have the lowest organic matter content and carbonate between 10% and 9.40%. On the other hand, Sheraton area has the highest organic matter content. The Principal Component Analysis) PCA) indicate the anthropogenic sources of Zn and Pb at the Red Sea coast based on Sediment Quality Guidelines(SQGs).According to the Enrichment factor (EF) and the geo-accumulation factor (Igeo), Cu and Pb were the highest enriched elements due to anthropogenic contamination; consequently, the studied areas were classified as moderately to highly contaminate by Cu and Pb at Hurghada.
اظهر المزيد [+] اقل [-]Influence of atmospheric circulation patterns on dust transport during Harmattan Period in West Africa النص الكامل
2018
Oluleye, Ayodeji | Jimoh, Olatunji
This study has used TOMS AI as well as the reanalysis dataset of thirty-four years (1979-2012) to investigate the influence of atmospheric circulation on dust transport during the Harmattan period in West Africa, using Aerosol Index (AI) data, obtained from various satellite sensors. Changes in Inter-Tropical Discontinuity (ITD), Sea Surface Temperature (SST) over the Gulf of Guinea, and North Atlantic Oscillation (NAO) during Harmattan period (November-March) have been analyzed on daily basis with Harmattan dust mobilization as well as atmospheric circulation pattern being evaluated via a kernel density estimate that shows the relation between the two variables. The study has found out that strong north-easterly (NE) trade winds were over most of the Sahelian region of West Africa during the winter months with the maximum wind speed reaching 8.61 m/s in January. The strength of NE winds determines the extent of dust transport to the coast of Gulf of Guinea during winter. This study has also confirmed that the occurrence of the Harmattan chiefly depends on SST in Atlantic Ocean as well as ITD position, not to mention the strength of low level winds. However, it has been noted that NAO has limited effects on dust mobilization in West Africa, in shear contrast to North Africa where NAO is a strong factor in dust mobilization.
اظهر المزيد [+] اقل [-]A Review of on Environmental Pollution Bioindicators النص الكامل
2018
Asif, Nayyab | Malik, Muhammad | Chaudhry, F.N.
Qualitative status of the environment is signaled by a group of indicators, known as bioindicators, several of which are responsible for showing progressive impacts of different types of pollutants. Having addressed the influence of various bioindicators in environmental pollution, it has been revealed that bioindicators are sensitive to any disturbance in any environment. With regards to the pollution, the quality of an ecosystem can be judged by an organism, which is actually an indicator and play a key role in monitoring its changes. A reliable and cost effective way to evaluate the changes in the environment is possible by means of indicator species as ecological indicators, yet selecting a specific indicator poses a real challenge, followed by its identification as well as relation among indicators and their particular applications. As a result, environmental, ecological, and biodiversity indicators fulfill their goal of monitoring environmental quality. The current situation requires cost effective bioindicators along with their reliability to detect and mitigate the impacts of pollution in our environment.
اظهر المزيد [+] اقل [-]Pollution of Heavy Metals in Some Farms of Torbat-E Jam, Khorasan Razavi Province, Iran النص الكامل
2018
Jami Al-Ahmadi, Majid | Porkhabbaz, Ali Reza | Sangak Sani, Bent-olhoda
Agricultural intensification is associated with the use of great amounts of agrochemicals that may result in the accumulation of metals in soils, and –subsequently—agricultural products and food chain. Nowadays, this is a major concern for many Iranian agricultural products, necessitating scientific researches on the issue. Therefore, the present study has been conducted to evaluate the level of metal contamination in some agricultural products of Torbat-e Jam, Iran, with the following purposes: (i) to determine concentrations of cadmium (Cd), nickel (Ni), and lead (Pb) in melon (Cucumis melo var. inodorus), sugar beet (Beta vulgaris), and maize (Zea mays) as well as water and soils of some farms in Torbat-e Jam, Iran; and (ii) to examine chemical fertilizers as a possible source of heavy metals' contamination. To do so it has taken some samples from soils, irrigation waters, chemical fertilizers, and crops, measuring their heavy metals contents by means of atomic absorption spectrometry. Results show that heavy metals' concentrations in groundwater and soil were lower than the adopted global standards. Among fertilizers, only Cd content of triple-superphosphate was higher than the standards, leading to a substantial buildup of Cd in the soil, compared to Pb. The greater use of potassium fertilizer has increased Pb concentration in the soil samples of maize farms during the growing season. Among all elements, Pb had the greatest transfer coefficient. It seems that current farm management practices as well as excessive use of chemical fertilizers may further the contamination and loss of soil quality in agricultural systems of the region.
اظهر المزيد [+] اقل [-]Enhanced Bioremediation of Brass Crude-Oil (Hydrocarbon), Using Cow Dung and Implication on Microbial Population النص الكامل
2018
Olawepo, Gabriel | Ogunkunle, Clement | Adebisi, Olusoji | Fatoba, Paul
The present study has used soil samples from Nigeria, contaminated with Brass crude-oil, to determine its biodegradation through enhanced biostimulation with cow dung and periodic aeration. Over a period of twenty-eight days, the hydrocarbon-utilizing bacteria (HUB) and hydrocarbon-utilizing fungi (HUF) have been counted and identified. Results from biodegradation of the brass crude-oil over the aforementioned period show that amended crude-oil-spiked soil has had 54.82% degradation while for amendment and periodic turning this has been 55.90%, not significantly higher than the former at p≤0.05. Also degradation of spiked soil without cow dung amendment has been 16.13%. The identified HUB are Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, and Streptococcus thermophillus, with individual occurrence of 18.52% as well as Proteus vulgaris and Micrococcus luteus with 11.11% and 14.81% occurrence, respectively. Also, the occurrence rate of HUF like Aspergillus flavus, A. niger, Penicillium chrysogenum, Trichothecium roseum, and Penicillium citrinum have been 15.63% each;whilefor Alternaria alternata and Neurospora crazza it has been 6.25% and for Saccharomyces cerevisae and A. fumigatus, 9.38%and3.13%, respectively. The study concludes that amendment with cow dung and periodic turning of the soil enhance degradation of Brass crude-oil significantly. What is more, aeration by periodic turning slightly improves degradation only with cow dung treatment on Days 21 and 28.
اظهر المزيد [+] اقل [-]An Innovative Method to Allocate Air-Pollution-Related Taxes, Using Aermod Modeling (case study: Besat Power Plant). النص الكامل
2018
Tamjidi, Mahsa | Rashidi, Yousef | Atabi, Farideh | broomandi, parya
The present study applies the model of American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) to investigate NO2 emissions from Besat thermal power plant, which is fuelled by natural gas to function. Results indicate that the simulated concentration of NO2 based on AERMOD, does not exceed NO2 concentration limit, set by the Iranian Ambient Air Quality Standard. This shows that NO2 emissions from Besat power plant do not have any significant impact on nearby communities. The natural-gas-based power plant is capable of reducing the air pollution level. It also can decrease the hospital treatment costs, thus protecting public health. The modeling results shows that natural-gas-based power plant as a clean technology in power generation. Also, the AERMOD model has been used to determine the pollution source matrix of Besat power plant. An innovative idea has been implemented to not only determine air-pollution-related taxes and complexities but to solve the legal problem associated with it, also. As for the complexities, their determination entails two different methods: one, based on city's boundaries along with simulated amount of air pollutant concentrations in each receptor, and the other, based on the population of each receptor (i.e., the cities of Varamin, Eslamshahr, and Nasirshahr), which plays a vital role. According to the first approach, Varamin has the lion's share in the air pollution, caused by Best power plant. However, the second approach surprisingly shows that the largest portion belongs to Eshalmshahr, indicating the significant influence of its population.
اظهر المزيد [+] اقل [-]Environmental Situation of an Agricultural Area in Akure, Nigeria, Based on Physico-Chemical Properties of Rainwater النص الكامل
2018
Abulude, Francis | Ndamitso, M.M. | Abdulkadir, A
Acid rain still poses a global problem today, exerting many adverse effects on man, animal, and materials. As its research question, the present study tries to find out whether or not acid rains exist in Akure, Nigeria. For so doing, it determines physico-chemical properties of rain water samples, namely pH, temp, Electrical Conductivity (EC), TDS, acidity, SO4-, NO2-, Cl-, and Free CO2. According to the results, the pH ranged between 6.0 and 7.8, never falling below 5.6 which is an indication of acid rain. Also, the minimum EC was 3µS/cm and the maximum, 201µS/cm. Moreover, TDS was between 1 and 100mg/L, while Free CO2 had a mean of 23.00 and Standard Deviation of 6.16. The dominant ion was SO4- (10-11%), followed by NO3-, and Cl-. Results from the first six months (July-December 2015) reveal slight correlations in the following: TDS with pH (0.532), EC and pH (0.501), Temp and Free CO2 (0.59), whereas strong correlations have been recorded in the following parameters: Acidity with pH (0.71) and Temperature (0.69), NO2- with pH (0.96) and acidity (0.96), SO4- with temp (0.68) and NO2- (0.83), and finally Cl- with Free CO2 (0.61), NO2- (0.73), and Cl- (0.65). It can be concluded that in the environment under this study there have been no acid rain within the period.
اظهر المزيد [+] اقل [-]