خيارات البحث
النتائج 2031 - 2040 من 3,197
Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment
2015
Watson, Kalinda | Farré, Maria José | Birt, James | McGree, James | Knight, Nicole
This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.
اظهر المزيد [+] اقل [-]United States National Sewage Sludge Repository at Arizona State University—a new resource and research tool for environmental scientists, engineers, and epidemiologists
2015
Venkatesan, Arjun K. | Done, Hansa Y. | Halden, Rolf U.
Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a “sink” for recalcitrant, hydrophobic, and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the US Environmental Protection Agency’s definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize future opportunities and invite collaborative use of the NSSR by the research community. The H2O at ASU represents a new resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants, (ii) provide spatial and temporal trends of contaminants, (iii) inform and evaluate the effectiveness of environmental policy-making and regulations, and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society.
اظهر المزيد [+] اقل [-]Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination
2015
Sun, Kai | Liu, Juan | Gao, Yanzheng | Sheng, Yuehui | Kang, Fuxing | Waigi, Michael Gatheru
Plant organic contamination poses a serious threat to the safety of agricultural products and human health worldwide, and the association of endophytic bacteria with host plants may decrease organic pollutants in planta. In this study, we firstly determined the growth response and biofilm formation of endophytic Pseudomonas sp. Ph6-gfp, and then systematically evaluated the performance of different plant colonization methods (seed soaking (SS), root soaking (RS), leaf painting (LP)) for circumventing the risk of plant phenanthrene (PHE) contamination. After inoculation for 48 h, strain Ph6-gfp grew efficiently with PHE, oxalic acid, or malic acid as the sole sources of carbon and energy. Moreover, strain Ph6-gfp could form robust biofilms in LB medium. In greenhouse hydroponic experiments, strain Ph6-gfp could actively colonize inoculated plants internally, and plants colonized with Ph6-gfp showed a higher capacity for PHE removal. Compared with the Ph6-gfp-free treatment, the accumulations of PHE in Ph6-gfp-colonized plants via SS, RS, and LP were 20.1, 33.1, and 7.1 %, respectively, lower. Our results indicate that inoculating plants with Ph6-gfp could lower the risk of plant PHE contamination. RS was most efficient for improving PHE removal in whole plant bodies by increasing the cell numbers of Ph6-gfp in plant roots. The findings in this study provide an optimized method to strain Ph6-gfp reduce plant PAH residues, which may be applied to agricultural production in PAH-contaminated soil.
اظهر المزيد [+] اقل [-]Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system
2015
Lopes, Ana R. | Bello, Diana | Prieto-Fernández, Ángeles | Trasar-Cepeda, Carmen | Manaia, Célia M. | Nunes, Olga C.
The microbial communities of bulk soil of rice paddy fields under an ancient organic agriculture regimen, consisting on an alfalfa-rice rotation system, were characterized. The drained soil of two adjacent paddies at different stages of the rotation was compared before rice seeding and after harvesting. The relationships among the soil microbial, physicochemical, and biochemical parameters were investigated using multivariate analyses. In the first year of rice cropping, aerobic cultivable heterotrophic populations correlated with lineages of presumably aerobic bacteria (e.g., Sphingobacteriales, Sphingomonadales). In the second year of rice cropping, the total C content correlated with presumable anaerobic bacteria (e.g., Anaerolineae). Independently of the year of rice cropping, before rice seeding, proteolytic activity correlated positively with the cultivable aerobic heterotrophic and ammonifier populations, the soil catabolic profile and with presumable aerobes (e.g., Sphingobacteriales, Rhizobiales) and anaerobes (e.g., Bacteroidales, Anaerolineae). After harvesting, strongest correlations were observed between cultivable diazotrophic populations and bacterial groups described as comprising N₂ fixing members (e.g., Chloroflexi-Ellin6529, Betaproteobacteria, Alphaproteobacteria). It was demonstrated that chemical parameters and microbial functions were correlated with variations on the total bacterial community composition and structure occurring during rice cropping. A better understanding of these correlations and of their implications on soil productivity may be valid contributors for sustainable agriculture practices, based on ancient processes.
اظهر المزيد [+] اقل [-]Integron diversity in marine environments
2015
Abella, Justine | Bielen, Ana | Huang, Lionel | Delmont, Tom O. | Vujaklija, Dušica | Duran, Robert | Cagnon, Christine
Integrons are bacterial genetic elements known to be active vectors of antibiotic resistance among clinical bacteria. They are also found in bacterial communities from natural environments. Although integrons have become especially efficient for bacterial adaptation in the particular context of antibiotic usage, their role in natural environments in other contexts is still unknown. Indeed, most studies have focused on integrons and the spread of antibiotic resistance in freshwater or soil impacted by anthropogenic activities, with only few on marine environments. Notably, integrons show a wider diversity of both gene cassettes and integrase gene in natural environments than in clinical environments, suggesting a general role of integrons in bacterial adaptation. This article reviews the current knowledge on integrons in marine environments. We also present conclusions of our studies on polluted and nonpolluted backgrounds.
اظهر المزيد [+] اقل [-]Trace elements in the Fontinalis antipyretica from rivers receiving sewage of lignite and glass sand mining industry
2015
Kosior, Grzegorz | Samecka-Cymerman, Aleksandra | Kolon, Krzysztof | Brudzińska-Kosior, Anna | Bena, Waldemar | Kempers, Alexander J.
Intensive lignite and glass sand mining and industrial processing release waste which may contain elements hazardous to the aquatic ecosystem and constitute a potential risk to human health. Therefore, their levels must be carefully controlled. As a result, we examined the effects of sewage on the aquatic Fontinalis antipyretica moss in the Nysa Łużycka (lignite industry) and the Kwisa Rivers (glass sand industry). The Nysa Łużycka and the Kwisa Rivers appeared to be heavily polluted with As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn, which were reflected in the extremely high concentration of these elements in F. antipyretica along the studied watercourses. In the Nysa Łużycka, trace element composition in the moss species is affected by lignite industry with accumulation in its tissues of the highest concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, while samples from the Kwisa sites influenced by glass sand industry revealed the highest concentrations of As, V and Fe. The principal component and classification analysis classifies the concentration of elements in the aquatic F. antipyretica moss, thus enabling the differentiation of sources of water pollution in areas affected by mining industry.
اظهر المزيد [+] اقل [-]Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions
2015
Chin-Pampillo, Juan Salvador | Ruiz-Hidalgo, Karla | Masís-Mora, Mario | Carazo Rojas, Elizabeth | Rodríguez-Rodríguez, Carlos E.
A biomixture constitutes the active core of the on-farm biopurification systems, employed for the detoxification of pesticide-containing wastewaters. As biomixtures should be prepared considering the available local materials, the present work aimed to evaluate the performance of ten different biomixtures elaborated with by-products from local farming, in the degradation of the insecticide/nematicide carbofuran (CFN), in order to identify suitable autochthonous biomixtures to be used in the tropics. Five different lignocellulosic materials mixed with either compost or peat and soil were employed in the preparation of the biomixtures. The comprehensive evaluation of the biomixtures included removal of the parent compound, formation of transformation products, mineralization of radiolabeled CFN, and determination of the residual toxicity of the process. Detoxification capacity of the matrices was high, and compost-based biomixtures showed better performance than peat-based biomixtures. CFN removal over 98.5 % was achieved within 16 days (eight out of ten biomixtures), with half-lives below 5 days in most of the cases. 3-Hydroxycarbofuran and 3-ketocarbofuran were found as transformation products at very low concentrations suggesting their further degradation. Mineralization of CFN was also achieved after 64 days (2.9 to 15.1 %); several biomixtures presented higher mineralization than the soil itself. Acute toxicity determinations with Daphnia magna revealed a marked detoxification in the matrices at the end of the process; low residual toxicity was observed only in two of the peat-based biomixtures. Overall best efficiency was achieved with the biomixture composed of coconut fiber-compost-soil; however, results suggest that in the case of unavailability of coconut fiber, other biomixtures may be employed with similar performance.
اظهر المزيد [+] اقل [-]Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River estuary, China
2015
Wang, Pei | Lü, Yonglong | Wang, Tieyu | Zhu, Zhaoyun | Li, Qifeng | Zhang, Yueqing | Fu, Yaning | Xiao, Yang | Giesy, John P.
After global commercialization of short-chain perfluoroalkyl acids (PFAAs) as substitutes to conventional long-chain PFAAs by the major manufacturers, two fluorine industry parks for production of short-chain PFAAs located in the Daling River Basin of northern China have developed rapidly in the last few years. This study provides a systematic assessment of sources, emissions, transportation, and potential risks of the PFAAs in this area. The C4 perfluorobutane sulfonic acid (PFBS) and perfluorobutanoic acid (PFBA) were the predominant short-chain PFAAs in river water, with maximum concentrations of 2.90 and 1.35 μg/L, respectively. Park 1 equipped with a telomerization process was identified to be the source of linear and branched mixtures of PFBS, PFBA, and perfluorooctanoic acid (PFOA), while park 2 with an electrochemical fluorination process (ECF) was identified to be the source of linear and branched mixtures of PFBS and PFOA. Partition coefficients between water and sediment were consistent for C4-C8 perfluoroalkyl carboxylic acids (PFCAs) but directly proportional to C9-C11 PFCAs and perfluoroalkyl sulfonic acids (PFSAs). Analysis on the health risk of PFBS and PFBA suggested that they were not without risk since short chain PFAAs are known to be recalcitrant during water treatment.
اظهر المزيد [+] اقل [-]Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp
2015
Krishnamurti, Gummuluru S. R. | Subashchandrabose, Suresh R. | Megharaj, Mallavarapu | Naidu, R.
Biotests conducted with plants are presently used to estimate metal bioavailability in contaminated soils. But when plants are grown in soils, especially the plants with fine roots, root collection is easily biased and tedious. Indeed, at harvest, small amounts of soil can adhere to roots, resulting in overestimation of root metal content, and the finest roots are often discarded from the analysis because of their difficult and almost impossible recovery. This report presents a novel method for assessing the bioavailability of heavy metals in soils using microalgae. Two species of green unicellular microalgae were isolated from two highly contaminated soils and identified by phylogenetic and molecular evolutionary analyses as Chlorella sp. RBM and Chlorella sp. RHM. These two cultures were used to determine the metal uptake from metal-contaminated soils of South Australia as a novel, cost-effective, simple and rapid method for assessing the bioavailability of heavy metals in soils. The suggested method is an attempt to achieve a realistic estimate of bioavailability which overcomes the inherent drawback of root metal contamination in the bioavailability indices so far reported.
اظهر المزيد [+] اقل [-]Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum
2015
Bai, Xiaocui | Sun, Chongchong | Xie, Jun | Song Hào, | Zhu, Qianqian | Su, Yiyuan | Qian, Haifeng | Fu, Zhengwei
Atrazine (ATZ) is a commonly used herbicide that has recently come under scrutiny due to potential environmental toxicity and contamination. In this study, we found that the administration of ATZ indeed leads to reduction of photosynthesis and oxidative stress in Phaeodactylum tricornutum at the treated doses higher than 100 μg L⁻¹ after 48 h. We further explored the effect of ATZ on photosystem II (PSII) and gene expression of electron transport chain. Collectively, our results may suggest that ATZ entered the chloroplasts in alga depending on ATZ’s liposolubility and directly attacked on the electron transport chain, especially PSII, contributing to reactive oxygen species (ROS) burst. The increasing ROS could act as signals to induce or disturb the expression of photosynthesis-related genes, resulting in the imbalance of antioxidation and pro-oxidation in the alga.
اظهر المزيد [+] اقل [-]