خيارات البحث
النتائج 2061 - 2070 من 7,997
Emerging materials and technologies for landfill leachate treatment: A critical review النص الكامل
2021
Bandala, Erick R. | Liu, An | Wijesiri, Buddhi | Zeidman, Ahdee B. | Goonetilleke, Ashantha
Sanitary landfill is the most popular way to dispose solid wastes with one major drawback: the generation of landfill leachate resulting from percolation of rainfall through exposed landfill areas or infiltration of groundwater into the landfill. The landfill leachate impacts on the environment has forced authorities to stipulate more stringent requirements for pollution control, generating the need for innovative technologies to eliminate waste degradation by-products incorporated in the leachate. Natural attenuation has no effect while conventional treatment processes are not capable of removing some the pollutants contained in the leachate which are reported to reach the natural environment, the aquatic food web, and the anthroposphere. This review critically evaluates the state-of-the-art engineered materials and technologies for the treatment of landfill leachate with the potential for real-scale application. The study outcomes confirmed that only a limited number of studies are available for providing new information about novel materials or technologies suitable for application in the removal of pollutants from landfill leachate. This paper focuses on the type of pollutants being removed, the process conditions and the outcomes reported in the literature. The emerging trends are also highlighted as well as the identification of current knowledge gaps and future research directions along with recommendations related to the application of available technologies for landfill leachate treatment.
اظهر المزيد [+] اقل [-]Efficacy of in situ active capping Cd highly contaminated sediments with nano-Fe2O3 modified biochar النص الكامل
2021
Liu, Qunqun | Sheng, Yanqing | Liu, Xiaozhu
Effective remediation of Cd polluted sediment is imperative for its potential damages to aquatic ecosystem. Biochar (BC) and nano-Fe₂O₃ modified BC (nFe₂O₃@BC) were conducted to remedy Cd highly contaminated sediments, and their performances, applicable conditions, and mechanisms were investigated. After 60 d capping, both BC and nFe₂O₃@BC capping inhibited Cd release from sediment to overlying water and porewater (reduction rates >99%). The released Cd concentrations in overlying water with nFe₂O₃@BC capping decreased by 1.6–11.0 times compared to those of BC capping, indicating nFe₂O₃@BC presented a higher capping efficiency. Notably, the increases of acidity and disturbance intensity of overlying water weakened the capping efficiencies of nFe₂O₃@BC and BC. BC capping was inappropriate in acidic and neutral waters (pH 3, 5, and 7) because Cd maintained a continuous release after 15 d, while nFe₂O₃@BC capping was valid in all pH treatments. Under 150 rpm stirring treatment, Cd release rates with BC and nFe₂O₃@BC capping decreased after 15 d and 30 d, respectively. At 0 and 100 rpm treatments, Cd releases treated by nFe₂O₃@BC capping finally kept a balance, indicating nFe₂O₃@BC was valid at low disturbance intensity. BC and nFe₂O₃@BC capping inhibited Cd release via weakening the influences of pH and disturbance on sediment. However, capping layers should be further processed because most adsorbed Cd in capping layers (>98%) would be re-released into overlying water. Meanwhile, excessive application of nFe₂O₃@BC could increase the risk of Fe release. The results provide novel insights into the potential applications of nFe₂O₃@BC and BC in situ capping of Cd polluted sediments in field remediation.
اظهر المزيد [+] اقل [-]Cascading effects of insecticides and road salt on wetland communities النص الكامل
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
اظهر المزيد [+] اقل [-]Microbial mechanisms related to the effects of bamboo charcoal and bamboo vinegar on the degradation of organic matter and methane emissions during composting النص الكامل
2021
Guo, Honghong | Gu, Jie | Wang, Xiaojuan | Song, Zilin | Yu, Jing | Lei, Liusheng
In this study, functional microbial sequencing, quantitative PCR, and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were employed to understand the microbial mechanisms related to the effects of bamboo charcoal (BC) and bamboo vinegar (BV) on the degradation of organic matter (OM) and methane (CH₄) emissions during composting. BC + BV resulted in the highest degradation of OM. BV was most effective treatment in controlling CH₄ emissions and it significantly reduced the abundance of the mcrA gene. Methanobrevibacter, Methanosarcina, and Methanocorpusculum were closely related to CH₄ emissions during the thermophilic composting period. PICRUSt analysis showed that BC and/or BV enhanced the metabolism associated with OM degradation and reduced CH₄ metabolism. Structural equation modeling indicated that BC + BV strongly promoted the metabolic activity of microorganisms, which had a positive effect on CH₄ emissions. Together these results suggest that BC + BV may be a suitable composting strategy if the aerobic conditions can be effectively improved during the thermophilic composting period.
اظهر المزيد [+] اقل [-]Corpse decomposition increases the diversity and abundance of antibiotic resistance genes in different soil types in a fish model النص الكامل
2021
Feng, Tianshu | Su, Wanghong | Zhu, Jianxiao | Yang, Jiawei | Wang, Yijie | Zhou, Rui | Yu, Qiaoling | Li, Huan
As a common natural phenomenon, corpse decomposition may lead to serious environmental pollution such as nitrogen pollution. However, less is known about antibiotic resistance genes (ARGs), an emerging contaminant, during corpse degradation. Here, ARGs and microbiome in three soil types (black, red and yellow soil) have been investigated between experimental and control groups based on next-generation sequencing and high-throughput quantitative PCR techniques. We found that the absolute abundance of total ARGs and mobile genetic elements (MGEs) in the experimental groups were respectively enriched 536.96 and 240.60 times in different soil types, and the number of ARGs in experimental groups was 7–25 more than that in control groups. For experimental groups, the distribution of ARGs was distinct in different soil types, but sulfonamide resistance genes were always enriched. Corpse decomposition was a primary determinant for ARGs profiles. Microbiome, NH₄⁺ concentrates and pH also significantly affected ARGs profiles. Nevertheless, soil types had few effects on ARGs. For soil microbiome, some genera were elevated in experimental groups such as the Ignatzschineria and Myroides. The alpha diversity is decreased in experimental groups and microbial community structures are different between treatments. Additionally, the Escherichia and Neisseria were potential pathogens elevated in experimental groups. Network analysis indicated that most of ARGs like sulfonamide and multidrug resistance genes presented strong positively correlations with NH₄⁺ concentrates and pH, and some genera like Ignatzschineria and Dysgonomonas were positively correlated with several ARGs such as aminoglycoside and sulfonamide resistance genes. Our study reveals a law of ARGs’ enrichment markedly during corpse decomposing in different soil types, and these ARGs contaminant maintaining in environment may pose a potential threat to environmental safety and human health.
اظهر المزيد [+] اقل [-]Cotransport of uranyl carbonate loaded on amorphous colloidal silica and strip-shaped humic acid in saturated porous media: Behavior and mechanism النص الكامل
2021
Hou, Wei | Lei, Zhiwu | Hu, Eming | Wang, Hongqiang | Wang, Qingliang | Zhang, Rui | Li, Hui
Uranyl carbonate (UC(VI)) is a stable form of uranyl (U(VI)) that widely coexists with amorphous colloidal silica (ACSi) and humic acid (HA) in carbonate-rich U-contaminated areas. In this context, the cotransport behavior and mechanism of UC(VI) with ACSi (100 mg L⁻¹) and HA colloids in saturated porous media were systematically investigated. It was found that the ACSi and strip-shaped HA have a strong adsorption capacity for UC(VI), and their adsorption distribution coefficient (Kd) is 4–5 orders of magnitude higher than that of quartz sand (QS). In the ternary system, UC(VI) was mainly existing in the colloid-associated form at low UC(VI) concentration (4.2 × 10⁻⁶ M). Compared with the individual transport of UC(VI), the presence of ACSi and strip-shaped HA in the binary system promotes the transport of low-concentration UC(VI) (4.2 × 10⁻⁶ M) but shows a hindering effect when UC(VI) = 2.1 × 10⁻⁵ M. When ionic strength (IS) increased from 0 to 100 mM, the individual transport of UC(VI) and ACSi was weakened owing to the masking effect and the compression of the electrical double layer, respectively; this weakening effect is more pronounced in the binary (UC(VI)–ACSi) system. Notably, the transport of UC(VI) and ACSi in the ternary system is independent of the changes in IS due to the surface charge homogeneity strengthening the electrostatic repulsion between HA and QS. The Derjaguin–Landau–Verwey–Overbeek theory and retention profiles reveal the co-deposition mechanism of ACSi and UC(VI) in the column under different hydrochemical conditions. The nonequilibrium two-site model and the mathematical colloidal model successfully described the breakthrough data of UC(VI) and ACSi, respectively. These results are helpful for evaluating the pollution caused by UC(VI) migration in an environment rich in HA and formulating corresponding effective control strategies.
اظهر المزيد [+] اقل [-]Neonicotinoids stimulate H2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community النص الكامل
2021
Bao, Haibo | Gao, Haoli | Zhang, Jianhua | Lü, Haiyan | Yu, Na | Shao, Xusheng | Zhang, Yixi | Jin, Wei | Li, Shuqing | Xu, Xiaoyong | Tian, Jiahua | Xu, Zhiping | Li, Zhong | Liu, Zewen
Methane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in the cockroach Periplaneta americana and termite Coptotermes chaohuensis, insects with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. Cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane emission. Antibiotics mostly eliminated the effects. In P. americana guts, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and two genera from four could generate hydrogen. Hydrogen is a central intermediate in methanogenesis. All increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme for the final step of methanogenesis suggested the enhanced methane production ability in present methanogens. In the termite, hydrogen levels in gut and methane emission also significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulated gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with atmospheric methane.
اظهر المزيد [+] اقل [-]A holistic DPSIR-based approach to the remediation of heavily contaminated coastal areas النص الكامل
2021
Labianca, Claudia | De Gisi, Sabino | Todaro, Francesco | Wang, Lei | Tsang, Daniel C.W. | Notarnicola, Michele
This paper proposes a holistic approach to connect anthropogenic impacts to environmental remediation solutions. The eDPSIR (engineered-Drivers-Pressures-States-Impacts-Responses) framework aims at supporting the decision-maker in designing technological solutions for a contaminated coastal area, where the natural matrices need to be cleaned up. The eDPSIR is characterized by cause-effect relationships that are operationally implemented through three multidisciplinary toolboxes: (i) Toolbox 1, to connect driving forces with pressures, classifying the state of the system and allowing the identification of target contaminants and the extent of contamination; (ii) Toolbox 2, to quantify bioaccumulation also by identifying corresponding areas; (iii) Toolbox 3, to identify the most suitable remediation solutions for previously identified contaminated areas, named contamination scenarios. The eDPSIR was calibrated on the case study of the Mar Piccolo in Taranto (Southern Italy), one of the most complex and polluted areas in Europe. While the consolidated DPSIR allows for a strategic response by limiting the use of contaminated areas or reducing upstream pressures, the eDPSIR made it possible to structure with a semi-quantitative logic the problem of assisting the decision-makers in choosing the optimal technological remediation responses for each sediment scenario of contamination (heavy metal; organic compounds; mixed). Assisted natural attenuation was identified as the best remediation technology in terms of treatment effectiveness and smallest amount of impacts involved in the project actions. However, considering the scenario of mixed contamination, in-situ reactive capping reached a good rank with a value of the composite indicator equal to 99.5%; thermal desorption and stabilization/solidification recorded a value of 94.1% and 84.6%, respectively. The application of these toolboxes provides alternative means to interpret, manage, and solve different cases of global marine contaminated sites.
اظهر المزيد [+] اقل [-]Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution النص الكامل
2021
Zhang, Jushan | Cheng, Haoxiang | Wang, Dongbin | Zhu, Yujie | Yang, Chun | Shen, Yuan | Yu, Jing | Li, Yuanyuan | Xu, Shunqing | Song, Xiaolian | Zhou, Yang | Chen, Jia | Fan, Lihong | Jiang, Jingkun | Wang, Changhui | Hao, Ke
Nitrate is a major pollutant component in ambient PM₂.₅. It is known that chronic exposure to PM₂.₅ NO₃⁻ damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution.We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM₂.₅ NO₃⁻ exposure were characterized at bulk-tissue and single-cell resolution.PM₂.₅ NO₃⁻ exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m³), exposure significantly (FDR<10%) altered 95 genes’ expression. Among the genes associated with respiratory functions, a large fraction (74.6–91.7%) were significantly perturbed by PM₂.₅ NO₃⁻ exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM₂.₅ NO₃⁻ exposure.This study extended our knowledge of PM₂.₅ NO₃⁻ exposure’s effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM₂.₅ NO₃⁻ exposure and subsequent pulmonary disease risks.
اظهر المزيد [+] اقل [-]Nanoremediation: Sunlight mediated dye degradation using electrospun PAN/CuO–ZnO nanofibrous composites النص الكامل
2021
Jena, Sandeep Kumar | Sadasivam, Rajkumar | Packirisamy, Gopinath | Saravanan, Pichiah
This work demonstrated the development of nanofiber templated metal oxide nanocomposites by hydrothermal and calcination methods for photocatalytic degradation using Congo red (CR) as model pollutant. Herein, we developed PAN/CuO–ZnO nanocomposites by the electrospinning technique followed by heat treatment process i.e hydrothermal and calcination. The obtained nanofibrous composites were characterized by various analytical techniques such as X-Ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TG), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Photoluminescence (PL) and UV–Vis diffuse reflectance spectroscopy (DRS) studies. The results demostrated that the nanocomposites obtained through calcination possess better optical response with robust electronic structures. This is due to the better charge separation of excited electron-hole pairs of p-n heterostructured PAN/CuO–ZnO hybrid nanocomposites. The photocatalytic efficiency is found to be 98% and 93% for nanocomposites obtained through calcination and hydrothermal methods respectively. The reusability studies confirmed the stability and viability of multiple utilizations of photocatalysts. Furthermore, the photocatalytic mechanism corroborated the photocatalytic properties of the integrated facile nanofibrous-metallic (PAN/CuO–ZnO) composites and hence can be implemented in water remediation effectively.
اظهر المزيد [+] اقل [-]