خيارات البحث
النتائج 2091 - 2100 من 2,512
EDS and μ-XRF mapping of amalgam degradation products in ancient mirrors النص الكامل
2014
Arizio, E. | Orsega, E. F. | Falcone, R. | Vallotto, M.
An amalgam mirror is a mirror type, used from the fifteenth century until the end of the nineteenth century, where the reflective layer is constituted by a tin amalgam layer adhered to a glass sheet. In this work, two amalgam mirrors samples were studied by scanning electron microscopy with an energy dispersive spectrometer and by micro-X-ray fluorescence elemental mapping to go deeply into the understanding of the degradation mechanism of the amalgam layer of ancient mirrors. The investigation has been focused for the first time on the reflective surface of the amalgam layer adherent to the glass sheet to better understand the processes of amalgam corrosion. The two amalgam degradation compounds, romarchite and cassiterite, has been spatially differentiated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) maps. SEM images and micro-X-ray fluorescence and EDS maps showed that the amalgam degradation products grow up to form hemispherical stratified calottes. This structure is probably due to a mechanism involves cyclic phases and oxygen radial diffusion from a superficial oxidation nucleus.
اظهر المزيد [+] اقل [-]Assessment of the applicability of a “toolbox” designed for microbially assisted phytoremediation: the case study at Ingurtosu mining site (Italy) النص الكامل
2014
Sprocati, Anna Rosa | Alisi, Chiara | Pinto, Valentina | Montereali, Maria Rita | Marconi, Paola | Tasso, Flavia | Turnau, Katarzyna | De Giudici, Giovanni | Goralska, Katarzyna | Bevilacqua, Marta | Marini, Federico | Cremisini, Carlo
The paper describes the fieldwork at the Italian test site of the abandoned mine of sphalerite and galena in Ingurtosu (Sardinia), with the aim to assess the applicability of a “toolbox” to establish the optimized techniques for remediation of soils contaminated by mining activities. A preliminary characterization—including (hydro)geochemistry, heavy metal concentration and their mobility in soil, bioprospecting for microbiology and botany—provided a data set for the development of a toolbox to deliver a microbially assisted phytoremediation process. Euphorbia pithyusa was selected as an endemic pioneer plant to be associated with a bacterial consortium, established with ten selected native strains, including metal-tolerant bacteria and producers of plant growth factors. The toolbox was firstly assessed in a greenhouse pot experiment. A positive effect of bacterial inoculum on E. pithyusa germination and total plant survival was observed. E. pithyusa showed to be a well-performing metallophyte species, and only inoculated soil retained a microbial activity with a high functional diversity, expanding metabolic affinity also towards root exudates. These results supported the decision to proceed with a field trial, investigating different treatments used singly or in combination: bioaugmentation with bacterial consortia, mycorrhizal fungi and a commercial mineral amendment. Microbial activity in soil, plant physiological parameters and heavy metal content in plants and in soil were monitored. Five months after the beginning, an early assessment of the toolbox under field conditions was carried out. Despite the cold season (October–March), results suggested the following: (1) the field setup as well as the experimental design proved to be effective; (2) plant survival was satisfactory; (3) soil quality was increased and bioaugmentation improved microbial activity, expanding the metabolic competences towards plant interaction (root exudates); and (4) multivariate analysis supported the data provided that the proposed toolbox can be established and the field trial can be carried forward.
اظهر المزيد [+] اقل [-]Benefits to rare plants and highway safety from annual population reductions of a “native invader,” white-tailed deer, in a Chicago-area woodland النص الكامل
2014
Engeman, Richard M. | Guerrant, Travis | Dunn, Glen | Beckerman, Scott F. | Anchor, Chris
Overabundant white-tailed deer are one of the most serious threats to woodland plant communities in the Chicago area. Moreover, the abundant deer in a highly populated area causes economic harm and poses hazards to human safety through collisions with vehicles. The artificial conditions causing the overabundance and resulting consequences qualify the white-tailed deer in the Chicago area to be considered as “native invaders”. We examined the benefits of culling deer at a Chicago-area woodland preserve by comparing browse rates on four endangered plant species from years before culling began with years with culling. We also examined deer–vehicle collision and traffic flow rates on area roads from years before culling began and years with culling to assess whether population reductions may have benefited road safety in the area. All four endangered plant species (three orchid species and sweet fern) had lower browse rates in years with culls, although the decreased browsing rates were statistically distinguishable for only two of the species (grass pink orchid and sweet fern). After first verifying that traffic flow rates did not decrease from pre-cull years to years with culls, we analyzed the Illinois Department of Transportation data from area roads based on deer–vehicle collisions causing >US$500 in damage and showed a one-third reduction in deer–vehicle collisions. An economic analysis showed a cost savings during the cull years of US$0.6 million for reducing browsing to just these four monitored plant species and the reduction in deer–vehicle collisions.
اظهر المزيد [+] اقل [-]Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques النص الكامل
2014
Plant, Emma L. | Smernik, Ronald J. | Leeuwen, John van | Greenwood, Paul | Macdonald, Lynne M.
Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques النص الكامل
2014
Plant, Emma L. | Smernik, Ronald J. | Leeuwen, John van | Greenwood, Paul | Macdonald, Lynne M.
The paper-making process can produce large amounts of wastewater (WW) with high particulate and dissolved organic loads. Generally, in developed countries, stringent international regulations for environmental protection require pulp and paper mill WW to be treated to reduce the organic load prior to discharge into the receiving environment. This can be achieved by primary and secondary treatments involving both chemical and biological processes. These processes result in complex changes in the nature of the organic material, as some components are mineralised and others are transformed. In this study, changes in the nature of organics through different stages of secondary treatment of pulp and paper mill WW were followed using three advanced characterisation techniques: solid-state¹³C nuclear magnetic resonance (NMR) spectroscopy, pyrolysis-gas chromatography mass spectrometry (py-GCMS) and high-performance size-exclusion chromatography (HPSEC). Each technique provided a different perspective on the changes that occurred. To compare the different chemical perspectives in terms of the degree of similarity/difference between samples, we employed non-metric multidimensional scaling. Results indicate that NMR and HPSEC provided strongly correlated perspectives, with 86 % of the discrimination between the organic samples common to both techniques. Conversely, py-GCMS was found to provide a unique, and thus complementary, perspective.
اظهر المزيد [+] اقل [-]Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques النص الكامل
2014
Plant, E. | Smernik, R. | VanLeeuwen, J. | Greenwood, P. | Macdonald, L.
The paper-making process can produce large amounts of wastewater (WW) with high particulate and dissolved organic loads. Generally, in developed countries, stringent international regulations for environmental protection require pulp and paper mill WW to be treated to reduce the organic load prior to discharge into the receiving environment. This can be achieved by primary and secondary treatments involving both chemical and biological processes. These processes result in complex changes in the nature of the organic material, as some components are mineralised and others are transformed. In this study, changes in the nature of organics through different stages of secondary treatment of pulp and paper mill WW were followed using three advanced characterisation techniques: solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, pyrolysis-gas chromatography mass spectrometry (py-GCMS) and high-performance size-exclusion chromatography (HPSEC). Each technique provided a different perspective on the changes that occurred. To compare the different chemical perspectives in terms of the degree of similarity/difference between samples, we employed non-metric multidimensional scaling. Results indicate that NMR and HPSEC provided strongly correlated perspectives, with 86 % of the discrimination between the organic samples common to both techniques. Conversely, py-GCMS was found to provide a unique, and thus complementary, perspective. | Emma L. Plant, Ronald J. Smernik, John van Leeuwen, Paul Greenwood, Lynne M. Macdonald
اظهر المزيد [+] اقل [-]Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes النص الكامل
2014
Soares, Petrick A. | Silva, Tânia F. C. V. | Manenti, Diego R. | Souza, Selene M. A. G. U. | Boaventura, Rui A. R. | Vilar, Vítor J. P.
Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH = 8.2), moderate organic content (DOC = 152 mg C L⁻¹, COD = 684 mg O₂L⁻¹) and low-moderate biodegradability (40 % after 28 days in Zahn–Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe²⁺L⁻¹, leading to 98.5 % decolorization and 85.5 % mineralization after less than 0.1 and 5.8 kJUVL⁻¹, respectively. In order to achieve a final wastewater with a COD below 250 mg O₂L⁻¹(discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUVL⁻¹, consuming 7.5 mM hydrogen peroxide, resulting in 58.4 % of mineralization (t30W=3.2 min;T¯¯=30.7 ∘C;pH¯¯¯¯=2.80;UV¯¯¯¯¯G,n=13 W m−2).
اظهر المزيد [+] اقل [-]The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system النص الكامل
2014
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl⁻, HCO₃⁻, SO₄²⁻, and NO₃⁻anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L⁻¹and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl⁻and SO₄²⁻anions had negligible effects. HCO₃⁻anions had a accelerative effect on 1,1,1-TCA removal, and both NO₃⁻and HA had inhibitory effects. A Cl⁻mass balance showed that the amount of Cl⁻ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.
اظهر المزيد [+] اقل [-]Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009 النص الكامل
2014
Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90 % are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km⁻¹, respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM₁₀, SO₂, and NO₂concentration, while negative correlation exists between the extinction and T, WS, and O₃, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44 % of the extinction is from suspended particles, 3 % is from air molecules, about 5 % is from NO₂absorption, 0.35 % is from RH, and approximately 48 % is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.
اظهر المزيد [+] اقل [-]Effects of Cutrine-Plus® algaecide and predators on wood frog (Lithobates sylvaticus) tadpole survival and growth النص الكامل
2014
Christenson, Tia A. | Horton, Marisa E. | Jackson, Brian C. | Smith, G. R. (Geoffrey R.) | Rettig, Jessica E.
Copper contamination is increasing in many aquatic ecosystems. One mode by which copper can be introduced into aquatic ecosystems is as an algaecide, such as Cutrine-Plus®. Using a mesocosm experiment, we examined the effects of Cutrine-Plus® on wood frog (Lithobates sylvaticus) tadpoles. In addition, we examined how the presence of a nonnative predator the Western mosquitofish (Gambusia affinis) may interact with exposure to Cutrine-Plus®. Exposure to our low and high Cutrine-Plus® treatments had a strong negative effect on the wood frog tadpoles, and survivorship was greatly decreased in the low treatment, and no tadpoles survived in the high treatment. Additionally, the tadpoles that survived the low treatment were significantly smaller than those in the control treatment. Mosquitofish had no effect on the survivorship or growth of wood frog tadpoles, and mosquitofish presence did not have a significant interaction with the Cutrine-Plus® treatments. Cutrine-Plus® clearly had a negative effect on wood frog tadpoles at the concentrations used in our experiment, which were at and below the label-recommended dosages, suggesting that the use of Cutrine-Plus® in natural ponds may have negative consequences for wood frog populations and possibly other amphibians.
اظهر المزيد [+] اقل [-]Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites النص الكامل
2014
Kolekar, Parag D. | Phugare, Swapnil S. | Jadhav, Jyoti P.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.
اظهر المزيد [+] اقل [-]Styrofoam debris as a potential carrier of mercury within ecosystems النص الكامل
2014
Graca, Bożena | Bełdowska, Magdalena | Wrzesień, Patrycja | Zgrundo, Aleksandra
The present paper falls within the trend of research into interactions between various pollutants emitted anthropogenically into the environment and focuses on mercury and styrofoam debris. The study covers part of the Southern Baltic’s drainage area. Apart from styrofoam and beach sand, the research involved mosses, which are bioindicators of atmospheric metal pollution. The research has shown that mercury present in the environment becomes associated with styrofoam debris. The median for mercury concentrations in virgin styrofoam samples (0.23 ng g⁻¹dry weight (d.w.)) and in beach sand samples (0.69 ng g⁻¹d.w.) was an order of magnitude lower than in the styrofoam debris (5.20 ng g⁻¹d.w.). The highest mercury content observed in styrofoam debris (3,863 ng g⁻¹d.w.) exceeded the standards for bottom sediment and soil. The binding of mercury to styrofoam debris takes place in water, and presumably also through contact with the ground. A significant role in this process was played by biotic factors, such as the presence of biofilm and abiotic ones, such as solar radiation and the transformations of mercury forms related to it. As a result, mercury content in styrofoam debris underwent seasonal changes, peaking in summertime. Furthermore, the regional changes of mercury content in the studied debris seem to reflect the pollution levels of the environment.
اظهر المزيد [+] اقل [-]