خيارات البحث
النتائج 2091 - 2100 من 4,935
Influence of Rainfall as an Environmental Factor on the Distribution of Faunal Biodiversity in Nallamala Forest (Kurnool District), Andhra Pradesh النص الكامل
2019
M. Nagabhushan Reddy, P. Kavitha, T. Baleeswaramma and K. Nirosha
Climate change ordinarily indicates a change in behaviour of the weather elements over an area during a time span. The change is attributable directly or indirectly to human activities or the natural causes that have the effect of altering the atmospheric composition. One aspect of this complexity is that climate change will impact unevenly across the ecosystems that prove vulnerable to climate changes. Biodiversity means variation of life forms within a given ecosystem. The present work attempts to trace down the nature of interrelationship between the climate change and faunal biodiversity especially with regard to rainfall variations in Nallamala forest (Kurnool district) of Andhra Pradesh. Rainfall is also one of the limiting factors of the species expansion that determines its distribution in boundaries of the area. The trend of rainfall time-series data indicates a decreasing trend in the rainfall pattern over forest and agricultural and grassland areas from 2014 along with northern, central and southern Western Ghats.
اظهر المزيد [+] اقل [-]3D Simulation Model of Tidal, Internal Mixing and Turbulent Kinetic Energy of Palu Bay النص الكامل
2019
Sabhan, Alan Frendy Koropitan, Mulia Purba and Widodo Setiyo Pranowo
The tidal simulation models and internal mixing were constructed using finite volume method to simulate diurnal tide (K1) constituent and semidiurnal tide (M2) constituent, the mixing level model using General Ocean Turbulence Model (GOTM). Tidal elevation amplitude of the model K1 ranges from 19.27 to 19.31 cm, high tidal amplitude at the point near the mouth of the Palu River, low tidal amplitude at the open boundary of the model that leads to the Makassar Strait. The amplitude range by M2 tidal constituents is 55.55-55.75 cm, high tidal amplitude at the mouth of Palu Bay and the end of Palu Bay and the slope area. The tidal current of the K1 constituent strengthens at the open boundary of the model and weakens into Palu Bay, which then undergoes strengthening near the mouth of the Palu River which experiences extreme siltation, tidal currents strengthen in the mouth area of Palu Bay and the tip of Palu Bay is caused by the tidal constituent propagation M2 and also the slope of the area along the coast of Palu Bay. Bottom Ekman layer which is caused by K1 constituent can reach 11 meters while the M2 constituent reaches 7 meters. In the slope area, are also found the buoyancy frequency with the order of 10-5 which is at a depth of 75-150 m. Kinetic energy in Palu Bay stands at O (10-5-10-3) with high kinetic energy around rough topography in the order of 10-3 around the mouth of Palu Bay.
اظهر المزيد [+] اقل [-]Preparation, Characterization and Adsorption Capacity of Bauxite-Carbon Nanotube Composite النص الكامل
2019
Suha Sahib Abd and Ahmed Mohammed Abbas
Iraqi bauxite clay was modified by using multiwall carbon nanotube (MWCNTs) as a modifying agent. The characterization of bauxite and bauxite/carbon nanotube was accomplished by using the Fourier transform infrared spectroscopy, scanning electron microscopy, atomic forces microscopy and X-Ray diffraction techniques. Uses the bauxite and bauxite/carbon nanotube composite for methyl green dye adsorption were achieved in a batch system. The adsorption equilibrium was attained at 60 and 45 min and adsorption efficiency reached maximum of 22 and 31% for bauxite and bauxite/carbon nanotube composite respectively, at an adsorbent dose of 0.01 g and initial dye concentration of 16 mg/L. Relying on the above shows that bauxite/carbon nanotube is a suitable adsorbent for the adsorption of methyl green dye, better than the bauxite clay.
اظهر المزيد [+] اقل [-]A Project Design for Air Pollution Studies Over Bobodioulasso-Burkina Faso النص الكامل
2019
Emetere M.E., Sanni S.E. and Okoro E.E.
This paper introduces a project design on estimating air pollution over geographical regions that have a mono-source of data acquisition. Fourteen years (2000-2013) aerosol optical depth dataset was obtained from the Multi-angle Imaging Spectro-Radiometer (MISR). The peculiar design that has been discussed in this paper focusses on human health and environmental disturbances. The secondary datasets that were generated from the primary data were aerosol loading, particles sizes, Angstrom parameter, and the statistics of the primary dataset. A computational data treatment was introduced for the determination of data reliability of the dataset. The techniques highlighted in this study are germaine to be reproduced in several geographical locations.
اظهر المزيد [+] اقل [-]Toxicological evaluation of nail polish waste discarded in the environment النص الكامل
2019
Felzenszwalb, Israel | Fernandes, Andreia da Silva | Brito, Lara Barroso | Oliveira, Gisele Augusto Rodrigues | Silva, Paula Aquino Soeiro | Arcanjo, Maria Elena | Marques, Monica Regina da Costa | Vicari, Taynah | Leme, Daniela Morais | Cestari, Marta Margarete | Ferraz, Elisa Raquel Anastacio
Nail polish has been widely used around the world. However, the hazards of nail polishes discarded in the environment are still poorly investigated. Thus, the toxicogenetic effects of solubilized (SE) and leached (LE) extracts from nail polishes were investigated, simulating their disposal on water and landfill, respectively, and identifying their physicochemical properties and chemical constituents. Organic compounds and metals were detected in both extracts. SE and LE only induced mutagenic effects in TA98 Salmonella strain in the presence and absence of exogenous metabolic activation. Although both extracts did not significantly increase the frequency of micronucleated HepG2 cells, the cell viability was affected by 24-h exposure. No DNA damage was observed in gonad fish cells (RTG-2) exposed to both extracts; however, the highest SE and LE concentrations induced significant lethal and sublethal effects on zebrafish early-life stages during 96-h exposure. Based on our findings, it can be concluded that if nail polishes enter aquatic systems, it may cause negative impacts to the environment.
اظهر المزيد [+] اقل [-]Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI) النص الكامل
2019
Laysandra, Livy | Ondang, Immanuel Joseph | Ju, Yi-Hsu | Ariandini, Benedikta Hervina | Mariska, Agatha | Soetaredjo, Felycia Edi | Putro, Jindrayani Nyoo | Santoso, Shella Permatasari | Darsono, Farida Lanawati | Ismadji, Suryadi
Robust and simple composite films for the removal of methyl orange (MO) and Cr(VI) have been prepared by combining chitosan, saponin, and bentonite at a specific ratio. There are several composite films (chitosan-saponin-bentonite (CSB)) prepared; among them, the composite films CSB₂:₃ and CSB₁:₁ have the highest removal efficiency toward MO and Cr(VI) where the maximum removal is 70.4% (pH 4.80) and 92.3% (pH 5.30), respectively. It was found that different types of adsorbate have different thermodynamic properties of the adsorption process; the adsorption of MO onto CSB₂:₃, chitosan, and acid-activated bentonite (AAB) proceeded endothermically, while the adsorption of Cr(VI) onto CSB₁:₁, chitosan, and AAB proceeded exothermically. The parameters of the adsorption were modeled by using isotherm and kinetic equations. The models of Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth were used for fitting the adsorption isotherm data at a temperature of 30, 45, and 60 °C; all of the isotherm models could represent the data well. The result indicates that CSB₂:₃ has the highest adsorption capacity toward MO with qₘ of 360.90 mg g⁻¹ at 60 °C; meanwhile, CSB₁:₁ has the highest adsorption capacity toward Cr(VI) with qₘ 641.99 mg g⁻¹ at 30 °C. The pseudo-second-order model could represent the adsorption kinetics data better than the pseudo-first-order equation. The adsorption mechanism was proposed, and the thermodynamic properties of the adsorption were also studied.
اظهر المزيد [+] اقل [-]Soil Microbial Metabolic Activity and Community Structure in Drip-Irrigated Calcareous Soil as Affected by Irrigation Water Salinity النص الكامل
2019
Guo, Huijuan | Hu, Zhiqiang | Zhang, Huimin | Hou, Zhenan | Min, Wei
Saline water irrigation can dramatically change the soil environment and thereby influence soil microbial processes. The objective of this field experiment was to use Biolog and high-throughput sequencing methods to evaluate the metabolic activity and community structure of soil microorganisms after 9 years of saline water irrigation. The results showed that brackish and saline water irrigation significantly increased soil bulk density and salinity, but significantly decreased soil pH, TN, SOM, MBC, and metabolic activity. The Biolog tests of sole-carbon-source utilization indicated that the brackish and saline water treatments significantly reduced the utilization of four carbohydrate sources (D-cellobiose, β-methyl-d-glucoside, D-mannitol, and glucose-1-phosphate), two amino acid sources (L-asparagine and glycyl-L-glutamic acid), two carboxylic acid sources (D-galacturonic acid and D-malic acid), and two polymer sources (Tween 80 and glycogen). Brackish and saline water increased soil bacterial richness (ACE and Chao 1 indices) but had no effect on which bacterial phyla were present. Brackish and saline irrigation water significantly increased the relative abundance of four dominant bacterial phyla (Gemmatimonadetes, Actinobacteria and Chloroflexi, Saccharibacteria). In contrast, the relative abundance of five dominant phyla (Proteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia) was reduced by brackish and saline irrigation water. Our study suggests that soil bacterial community will form significant differences species under different irrigation water salinity, which can adapt to saline stress by adjusting the species composition. The results of this study increase understanding about the potential effects of saline water irrigation on soil biological processes.
اظهر المزيد [+] اقل [-]Photocatalytic Degradation Dynamics of Methyl Orange Using Coprecipitation Synthesized Fe3O4 Nanoparticles النص الكامل
2019
Al-Abdallat, Yousef | Jum’h, Inshad | Al Bsoul, Abeer | Jumah, Rami | Telfah, Ahmad
This study aims to investigate the photocatalytic degradation performance, mechanism, and dynamics of methyl orange (MO) which is a widely used organic dye in textile industries as well a hazardous wastewater pollutant. The degradation process was catalyzed by employing a synthesized Fe₃O₄ magnetic nanoparticle (NP) using the coprecipitation method. The structural and morphological properties of the synthesized Fe₃O₄ NPs were investigated by employing XRD, HR-SEM, and XPS, which proved that acquired Fe₃O₄ NPs were in a pure phase. Moreover, the crystallite sizes fall in the range of 28–31.8 nm and were estimated by applying the Scherrer equation on the XRD spectrum as well as calculated independently by applying a statistical approach on the SEM micrographs. The UV–Vis maximum in the visible range at 468.8 nm consists of two absorption frequency bands due to the effect of the hydrogen-bond interaction between water and the azo nitrogens in the MO. A non-monotonic spectral dynamic accompanied by peak wavelength shifts, as well as the absolute signal amplitude and signal area of the MO band, suggests that a cleavage of the azo bond is not the only and/or the dominant process in the photocatalytic oxidization of the MO in a protic solvent. The overall absorbance process is a complicated response to a combination of nonspecific and specific solute-solvent interactions, dipole-dipole interactions, hydrogen-bonding networks, and other possible intermolecular interactions such as hydrophobic/hydrophilic interactions. A bi-exponential decay was found to be the best fitting function to model the decay of the time-dependent electrical conductivity of the MO aqueous solution under photocatalytic oxidization. The Fe₃O₄ NPs exhibited a 98.3% removal of MO within 110 min. Photocatalytic degradation of methyl orange can be modeled to the first-order model with a rate constant k of 0.037 min⁻¹ taking into account the initial concentration of 1175 ppm of MO. The degradation/decolorization efficiency deduced from the low-frequency band of the visible spectra is around 99.4% after 110 min. The real-time degradation/decolorization efficiencies deduced from the overall absorbance maxima and the low-frequency band have a discrepancy of 50.1% at 20 min and 12.3% at 60 min representing the progressive attenuation of the H-bond impact dissociation of MO (degradation/decolorization).
اظهر المزيد [+] اقل [-]Effect of Activation Time on the Performance and Mechanism of CO2-Activated Wheat Straw Char for the Removal of Cd2+ النص الكامل
2019
Li, Mengxue | Shu, Daobing | Liu, Haibo | Chen, Tianhu | Chen, Dong
The removal behavior and characteristic of cadmium (Cd²⁺) on wheat straw char activated by CO₂ were investigated in this study. The equilibrium, kinetics, and removal isotherms were studied. The results of batch experiments revealed that the removal of Cd²⁺ was described well by pseudo-second-order and Langmuir models. The increase in activation time improved the removal of Cd²⁺, especially for the activation time of 84 min. The results suggested that chemisorption of Cd²⁺ on activated carbon was the main reaction mechanism. The maximum removal capacity of Cd²⁺ onto activated WSC-84 was 75.55 mg/g, which was much higher than other three samples activated by CO₂ with other amounts of time. According to the results of SEM, XPS, and FT-IR, complexation with surface oxygen-containing functional groups, ion exchange, and precipitation were the possible mechanisms of the removal process. It is suggested that the experimental results will enhance the comprehensive understanding of the activation of biomass and its utilization in the restoration of Cd-contaminated soil.
اظهر المزيد [+] اقل [-]Inverse associations of bisphenol A and phthalate metabolites with serum bilirubin levels in Korean population النص الكامل
2019
Choi, Yoonjeong | Yi, Sŏn-ju | Jeon, Jooeun | Jung, Keum Ji | Jee, Sun Ha
Bisphenol A (BPA) and phthalates are endocrine disruptors that can induce oxidative stress. Serum bilirubin has antioxidant properties and may serve as a biomarker of oxidative stress. The objective of this study was to explore the relationship of BPA and phthalates with serum bilirubin levels in a Korean population. Urinary concentrations of BPA and six phthalate [mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5- hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono-benzyl phthalate (MBzP)] were measured in 709 participants. Serum concentrations of BPA and three phthalate metabolites [MnBP, MiBP, and mono-(2-ethylhexyl) phthalate (MEHP)] were measured in 752 participants. After excluding missing variables, associations between above chemicals and serum bilirubin levels were analyzed using multivariate linear regression with age, sex, BMI, GGT, GOT, GPT, and alcohol intake adjustment. Participants were further stratified by sex. Among the urinary chemicals, BPA and four phthalate metabolites (MnBP, MEOHP, MEHHP and MECPP) were inversely associated with serum bilirubin levels (BPA: β = − 0.071, P < 0.0001; MnBP: β = − 0.055, P = 0.025; MEOHP: β = − 0.101, P < 0.0001; MEHHP: β = − 0.106, P < 0.0001; MECPP: β = − 0.052, P = 0.003). In a case of serum chemicals, only MiBP showed significantly positive association (β = 0.036, P = 0.016). After stratification by sex, the associations of urinary BPA remained both in male and female, of which urinary phthalates disappeared in female. The association of serum MiBP was disappeared after stratification. Urinary BPA and phthalate metabolites were inversely associated with serum bilirubin levels, whereas serum MiBP showed positive association with bilirubin. These results could provide clues for understanding the mechanisms of endocrine disruptor from oxidative stress to excretion from our body.
اظهر المزيد [+] اقل [-]