خيارات البحث
النتائج 211 - 220 من 3,991
The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL)
2016
Wu, Chuan | Zou, Qi | Xue, Sheng-Guo | Pan, Wei-Song | Huang, Liu | Hartley, William | Mo, Jing-Yu | Wong, Ming-Hung
Rice is one of the major pathways of arsenic (As) exposure in human food chain, threatening over half of the global population. Greenhouse pot experiments were conducted to examine the effects of Si application on iron (Fe) plaque formation, As uptake and rice grain As speciation in indica and hybrid rice genotypes with different radial oxygen loss (ROL) ability. The results demonstrated that Si significantly increased root and grain biomass. Indica genotypes with higher ROL induced greater Fe plaque formation, compared to hybrid genotypes and sequestered more As in Fe plaque. Silicon applications significantly increased Fe concentrations in iron plaque of different genotypes, but it decreased As concentrations in the roots, straws and husks by 28–35%, 15–35% and 32–57% respectively. In addition, it significantly reduced DMA accumulation in rice grains but not inorganic As accumulation. Rice of indica genotypes with higher ROL accumulated lower concentrations of inorganic As in grains than hybrid genotypes with lower ROL.
اظهر المزيد [+] اقل [-]Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis
2016
Wei, Xi | Gilevska, Tetyana | Wetzig, Felix | Dorer, Conrad | Richnow, Hans-Hermann | Vogt, Carsten
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA.
اظهر المزيد [+] اقل [-]Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions
2016
Arndt, J. | Deboudt, K. | Anderson, A. | Blondel, A. | Eliet, S. | Flament, P. | Fourmentin, M. | Healy, R.M. | Savary, V. | Setyan, A. | Wenger, J.C.
The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe–Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site.
اظهر المزيد [+] اقل [-]Sterol ratios as a tool for sewage pollution assessment of river sediments in Serbia
2016
Matić Bujagić, Ivana | Grujić, Svetlana | Jauković, Zorica | Laušević, Mila
In this work, source pollution tracing of the sediments of the Danube River and its tributaries in Serbia was performed using sterol ratios. Improved liquid chromatography-tandem mass spectrometry method, which enabled complete chromatographic separation of four analytes with identical fragmentation reactions (epicoprostanol, coprostanol, epicholestanol and cholestanol), was applied for the determination of steroid compounds (hormones, human/animal and plant sterols). A widespread occurrence of sterols was identified in all analyzed samples, whereas the only detected hormones were mestranol and 17α-estradiol. A human-sourced sewage marker coprostanol was detected at the highest concentration (up to 1939 ng g−1). The ratios between the key sterol biomarkers, as well as the percentage of coprostanol relative to the total sterol amount, were applied with the aim of selecting the most reliable for distinction between human-sourced pollution and the sterols originated from the natural sources in river sediments. The coprostanol/(cholesterol + cholestanol) and coprostanol/epicoprostanol ratios do not distinguish between human and natural sources of sterols in the river sediments in Serbia. The most reliable sterol ratios for the sewage pollution assessment of river sediments in the studied area were found to be coprostanol/(coprostanol + cholestanol), coprostanol/cholesterol and epicoprostanol/coprostanol. For the majority of sediments, human-derived pollution was determined. Two sediment samples were identified as influenced by a combination of human and natural biogenic sources.
اظهر المزيد [+] اقل [-]Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima
2016
Yang, Baolu | Onda, Yūichi | Wakiyama, Yoshifumi | Yoshimura, Kazuya | Sekimoto, Hitoshi | Ha, Yiming
About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012–2014) after the nuclear accident. Our results showed that radiocesium migrated into 24–28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for ¹³⁷Cs and ¹³⁴Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy.
اظهر المزيد [+] اقل [-]Chemical composition and source apportionment of size fractionated particulate matter in Cleveland, Ohio, USA
2016
Kim, Yŏng-ho | Krantz, Q Todd | McGee, John | Kovalcik, Kasey D. | Duvall, Rachelle M. | Willis, Robert D. | Kamal, Ali S. | Landis, Matthew S. | Norris, Gary A. | Gilmour, M Ian
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM2.5) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO3− level in winter and high SO42− level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern.
اظهر المزيد [+] اقل [-]Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China
2016
Wang, Pei | Lü, Yonglong | Wang, Tieyu | Zhu, Zhaoyun | Li, Qifeng | Meng, Jing | Su, Hongqiao | Johnson, Andrew C. | Sweetman, A. J. (Andrew J.)
Short chain perfluoroalkyl acids (PFAAs) have been developed since 2002 by the major manufacturers to replace the conventional C8 and higher homologues, with much of the world production shifted to China in recent years. In this study, we conducted a continuous monitoring program over the period 2011–2014 with seasonal monitoring in 2013 for PFAAs emitted from two rapidly developing fluorochemical industry parks located in the Daling River Basin, Northern China. The trend of PFAA contamination was identified, dominated by perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), with the maximum concentrations of 3.78 μg/L, 3.70 μg/L, and 1.95 μg/L, respectively. Seasonal monitoring uncovered the occasional emission of perfluorooctane sulfonic acid (PFOS). Construction trends of new facilities and associated manufacturing capacity of the main products were also analyzed to assess correlations with PFAA emissions. An assessment of the data over the period 2011–2014 found a positive correlation with fluorocarbon alcohol (FCA) production and emission of PFAAs. Groundwater and tap water around the main source indicated that the dominant PFAAs had different diffusion behaviors. PFBS levels were higher in surface water, while PFBA was dominant in groundwater and tap water, with PFOA levels being higher in downstream groundwater. Considering the continuous expansion and development of fluorochemical industry in the Daling River Basin, this study will provide abundant information on the effectiveness of risk assessment and management.
اظهر المزيد [+] اقل [-]High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae
2016
Chen, Lianguo | Zhu, Biran | Guo, Yongyong | Xu, Tao | Lee, Jae-seong | Qian, Pei-Yuan | Zhou, Bingsheng
PBDEs and heavy metals are two major contaminants at e-waste disposal sites, but their combined effects remain largely unexplored. In the present study, the transcriptomic profiles of zebrafish larvae were examined after acute exposure of embryos to 200 μg/L BDE-209, 20 μg/L lead (Pb) or their mixture (Mix). Stimulation of steroidogenic pathway and vitellogenesis in the BDE-209 and Mix treatments indicated the estrogenic activities of BDE-209, while Pb antagonized those estrogenic effects in the Mix treatment. Increased heart rates were observed in zebrafish exposed to the Pb and Mix treatments. The cardiac dysfunction probably resulted from the promotion of angiogenesis, increased adrenergic drive and induction of the formation of blood clot. Furthermore, the Pb and Mix treatments activated neuroendocrine regulation of the pituitary in a positive feedback loop, via the thyrotropin-releasing hormone receptor, thus increasing thyroid hormone production self-adaptively. Overall, the interaction between BDE-209 and Pb led to synergistic and antagonistic effects on gene transcriptions, with concerted contribution from their individual toxicological properties.
اظهر المزيد [+] اقل [-]Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil
2016
Fu, Qiuguo | Sanganyado, Edmond | Ye, Qingfu | Gan, Jay
Biosolids are extensively used in agriculture as fertilizers while offering a practical solution for waste disposal. Many pharmaceutical and personal care products (PPCPs), such as triclosan and triclocarban, are enriched in biosolids. Biosolid amendment changes soil physicochemical properties, which may in turn alter the persistence of PPCPs and hence the risk for secondary contamination such as plant uptake. To delineate the effect of biosolids on PPCPs persistence, triclosan and triclocarban were used as model compounds in this study and their sorption (Kd) and persistence (t1/2) were determined in different soils before and after biosolid amendment. Biosolids consistently increased sorption of triclosan and triclocarban in soil. The Kd of triclosan increased by 3.9–21 times following amendment of a sandy loam soil with biosolids at 2–10%. The persistence of both compounds was prolonged, with t1/2 of triclosan increasing from 10 d in the unamended soil to 63 d after biosolid amendment at 10%. The relationship between t1/2 and Kd was further examined through a meta-analysis using data from this study and all relevant published studies. A significant linear relationship between t1/2 and Kd was observed for triclosan (r2 = 0.69, p < 0.01) and triclocarban (r2 = 0.38, p < 0.05) in biosolid-amended soils. On the average, when biosolid amendment increased by 1%, t1/2 of triclosan was prolonged by 7.5 d, while t1/2 of triclocarban was extended by 4.7 d. Therefore, biosolid amendment greatly enhances persistence of triclosan and triclocarban, likely due to enhanced sorption or decreased chemical bioavailability. This finding highlights the importance to consider the effect of biosolids when evaluating the environmental risks of these and other biosolid-borne PPCPs.
اظهر المزيد [+] اقل [-]Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin
2016
Wang, Jiao | Zhou, Ming | Liu, Bao-shuang | Wu, Jian-hui | Peng, Xing | Zhang, Yu-fen | Han, Su-qin | Feng, Yin-chang | Zhu, Tan
To investigate the size distributions of chemical compositions and sources of particulate matter (PM) at ground level and from the urban canopy, a study was conducted on a 255 m meteorological tower in Tianjin from December 2013 to January 2014. Thirteen sets of 8 size-segregated particles were collected with cascade impactor at 10 m and 220 m. Twelve components of particles, including water-soluble inorganic ions and carbonaceous species, were analyzed and used to apportion the sources of PM with positive matrix factorization. Our results indicated that the concentrations, size distributions of chemical compositions and sources of PM at the urban canopy were affected by regional transport due to a stable layer approximately 200 m and higher wind speed at 220 m. The concentrations of PM, Cl− and elemental carbon (EC) in fine particles at 10 m were higher than that at 220 m, while the reverse was true for NO3− and SO42−. The concentrations of Na+, Ca2+, Mg2+, Cl− and EC in coarse particles at 10 m were higher than that at 220 m. The size distributions of major primary species, such as Cl−, Na+, Ca2+, Mg2+ and EC, were similar at two different heights, indicating that there were common and dominant sources. The peaks of SO42−, NH4+, NO3− and organic carbon (OC), which were partly secondary generated species, shifted slightly to the smaller particles at 220 m, indicating that there was a different formation mechanism. Industrial pollution and coal combustion, re-suspended dust and marine salt, traffic emissions and transport, and secondary inorganic aerosols were the major sources of PM at both heights. With the increase in vertical height, the influence of traffic emissions, re-suspended dust and biomass burning on PM weakened, but the characteristics of regional transport from Hebei Province and Beijing gradually become obvious.
اظهر المزيد [+] اقل [-]