خيارات البحث
النتائج 2131 - 2140 من 2,513
Function of bacterial cells and their exuded extracellular polymeric substances (EPS) in virus removal by red soils النص الكامل
2014
Zhao, Bingzi | Jiang, Yan | Jin, Yan | Zhang, Jiabao
The potential influence of autochthonous microorganisms on virus fate in soil is usually determined through extreme conditions of sterilization vs. nonsterilization; however, the relative importance of microbial cells and their exudates remains unclear. In this study, bacterial cells (cell) were harvested, and their exuded extracellular polymeric substances (EPS) were extracted from three strains of bacteria, namely, Gram-negative bacteria Pseudomonas putida and Pseudomonas aeruginosa as well as Gram-positive bacterium Bacillus subtilis. This study aimed to evaluate virus removal in solutions in the presence of cell, EPS, and their combination (cell/EPS), as well as to investigate how their presence affects virus removal efficiencies by four red soils based on batch experiments. Results showed that virus removal percentage in solutions ranged from 11 to 23 in the presence of cells only and from 12 to 15 in the presence of EPS only. The removal percentage in the combined cell/EPS treatment can be estimated by summing the results achieved by the cell and EPS treatments, separately. Meanwhile, cell presence had a negligible effect on virus removal by red soils. EPS and combined cell/EPS significantly reduced virus removal by 20 to 69 % and 16 to 50 %, respectively, which indicated that EPS served a dominant function in reducing virus removal. This study clearly demonstrated that the prediction of virus removal by red soils must consider the effect of bacteria, especially those producing large quantities of EPS, which can be responsible for the underestimation of viral load in certain studies.
اظهر المزيد [+] اقل [-]Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture النص الكامل
2014
Mallampati, Srinivasa Reddy | Mitoma, Yoshiharu | Okuda, Tetsuji | Sakita, Shogo | Simion, Cristian
In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95–99 % of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97 %), though higher hydrodechlorination efficiency by preliminary drying of soil was observed.
اظهر المزيد [+] اقل [-]A new device for formaldehyde and total aldehydes real-time monitoring النص الكامل
2014
Sassine, Maria | Picquet-Varrault, Bénédicte | Perraudin, Emilie | Chiappini, Laura | Doussin, Jean François | George, Christian
A new sensitive technique for the quantification of formaldehyde (HCHO) and total aldehydes has been developed in order to monitor these compounds, which are known to be involved in air quality issues and to have health impacts. Our approach is based on a colorimetric method where aldehydes are initially stripped from the air into a scrubbing solution by means of a turning coil sampler tube and then derivatised with 3-methylbenzothiazolinone-2-hydrazone in acid media (pH = −0.5). Hence, colourless aldehydes are transformed into blue dyes that are detected by UV–visible spectroscopy at 630 nm. Liquid core waveguide LCW Teflon® AF-2400 tube was used as innovative optical cells providing a HCHO detection limit of 4 pptv for 100 cm optical path with a time resolution of 15 min. This instrument showed good correlation with commonly used techniques for aldehydes analysis such as DNPH derivatisation chromatographic techniques with off-line and on-line samplers, and DOAS techniques (with deviation below 6 %) for both indoor and outdoor conditions. This instrument is associated with simplicity and low cost, which is a prerequisite for indoor monitoring.
اظهر المزيد [+] اقل [-]A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi النص الكامل
2014
Soni, Sumit K. | Singh, Rakshapal | Awasthi, Ashutosh | Kalra, Alok
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.
اظهر المزيد [+] اقل [-]Protective effect of Syzygium cumini against pesticide-induced cardiotoxicity النص الكامل
2014
Atale, Neha | Gupta, Khushboo | Rani, Vibha
Pesticide-induced toxicity is a serious issue which has resulted in plethora of diseases all over the world. The organophosphate pesticide malathion has caused many incidents of poisoning such as cardiac manifestations. The present study was designed to evaluate the effect of Syzygium cumini on malathion-induced cardiotoxicity. Dose optimization of malathion and polyphenols such as curcumin, (−)-epicatechin, gallic acid, butylated hydroxyl toluene, etc. was done by MTT cell proliferation assay. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were analyzed by different techniques. S. cumini methanolic pulp extract (MPE), a naturally derived gallic acid-enriched antioxidant was taken to study its effect on malathion-induced toxicity. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were also analyzed. Twenty micrograms per milliliter LD50 dose of malathion was found to cause stress-mediated responses in H9C2 cell line. Among all the polyphenols, gallic acid showed the most significant protection against stress. Gallic acid-enriched methanolic S. cumini pulp extract (MPE) showed 59.76 % ± 0.05, 81.61 % ± 1.37, 73.33 % ± 1.33, 77.19 % ± 2.38 and 64.19 % ± 1.43 maximum inhibition for DPPH, ABTS, NO, H₂O₂and superoxide ion, respectively, as compared to ethanolic pulp extract and aqueous pulp extract. Our study suggests that S. cumini MPE has the ability to protect against the malathion-mediated oxidative stress in cardiac myocytes.
اظهر المزيد [+] اقل [-]Impact of clay mineral on air oxidation of PAH-contaminated soils النص الكامل
2014
Biache, Coralie | Kouadio, Olivier | Lorgeoux, Catherine | Faure, Pierre
This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO₂produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO₂.
اظهر المزيد [+] اقل [-]Influence of nutrition in PCB-induced vascular inflammation النص الكامل
2014
Petriello, Michael C. | Newsome, Bradley | Hennig, Bernhard
The nutritional profile of an individual can influence the toxicity of persistent environmental toxicants. Polychlorinated biphenyls (PCBs), prevalent environmental pollutants, are highly lipid-soluble toxic compounds that biomagnify through trophic levels and pose cancer, neurocognitive, and atherosclerotic risk to human populations. There is a growing body of knowledge that PCBs can initiate inflammatory responses in vivo, and this inflammation can be either exacerbated or ameliorated by nutrition. Data indicate that diets high in certain dietary lipids such as omega-6 fatty acids can worsen PCB-induced vascular toxicity while diets enriched with bioactive food components such as polyphenols and omega-3 polyunsaturated fatty acids can improve the toxicant-induced inflammation. There is evidence that bioactive nutrients protect through multiple cell signaling pathways, but we have shown that lipid raft caveolae and the antioxidant defense controller nuclear factor (erythroid-derived 2)-like 2 (Nrf2) both play a predominant role in nutritional modulation of PCB-induced vascular toxicity. Interestingly, there appears to be an intimate cross-talk between caveolae-related proteins and cellular Nrf2, and focusing on the use of specific bioactive food components that simultaneously alter both pathways may produce a more effective and efficient cytoprotective response to toxicant exposure. The use of nutrition as a protective tool is an economically beneficial means to address the toxicity of persistent environmental toxicants and may become a sensible means to protect human populations from PCB-induced vascular inflammation and associated chronic diseases.
اظهر المزيد [+] اقل [-]Characterization and concentrations of polycyclic aromatic hydrocarbons in emissions from different heating systems in Damascus, Syria النص الكامل
2014
Alkurdi, Farouk | Karabet, François | Dimashki, Marwan
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43 ± 0.4 and 316 ± 1.4 μg/m³. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m³.
اظهر المزيد [+] اقل [-]Climate change and air pollution jointly creating nightmare for tourism industry النص الكامل
2014
Sajjad, Faiza | Noreen, Umara | Zaman, Khalid
The objective of the study is to examine the long-run and causal relationship between climate change (i.e., greenhouse gas emissions, hydrofluorocarbons, per fluorocarbons, and sulfur hexafluoride), air pollution (i.e., methane emissions, nitrous oxide emissions, and carbon dioxide emissions), and tourism development indicators (i.e., international tourism receipts, international tourism expenditures, natural resource depletion, and net forest depletion) in the World’s largest regions. The aggregate data is used for robust analysis in the South Asia, the Middle East and North Africa, sub-Saharan Africa, and East Asia and the Pacific regions, over a period of 1975–2012. The results show that climatic factors and air pollution have a negative impact on tourism indicators in the form of deforestation and natural resource depletion. The impact is evident, as we have seen the systematic eroding of tourism industry, due to severe changes in climate and increasing strain of air pollution. There are several channels of cause–effect relationship between the climatic factors, air pollution, and tourism indicators in the World’s region. The study confirms the unidirectional, bidirectional, and causality independent relationship between climatic factors, air pollution, and tourism indicators in the World. It is conclusive that tourism industry is facing all time bigger challenges of reduce investment, less resources, and minor importance from the government agencies because of the two broad challenges, i.e., climate change and air pollution, putting them in a dismal state.
اظهر المزيد [+] اقل [-]Phosphorus removal in a sulfur–limestone autotrophic denitrification (SLAD) biofilter النص الكامل
2014
Li, Ruihua | Yuan, Yulin | Zhan, Xinmin | Liu, Bo
The sulfur–limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO₃⁻), and influent PO₄³⁻concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO₃⁻-N of 30 mg L⁻¹and PO₄³⁻-P of 15 mg L⁻¹, the SLAD biofilter removed phosphorus of 45 % when the HRT was 6 h, in addition with TN removal of nearly 100 %. The optimal phosphorus removal in the SLAD biofilter was around 60 %. For the synthetic wastewater containing a PO₄³⁻-P concentration of 15 mg L⁻¹, the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.
اظهر المزيد [+] اقل [-]