خيارات البحث
النتائج 231 - 240 من 7,921
Spatiotemporal variations and determinants of water pollutant discharge in the Yangtze River Economic Belt, China: A spatial econometric analysis
2021
Zhou, Gan | Wu, Jianxiong | Liu, Hanchu
Water pollution is an urgent problem that needs to be controlled via green transformation and the development of the Yangtze River Economic Belt (YREB). Based on the water pollutant discharge and socio-economic database of prefecture-level cities in the YREB from 2011 to 2015, this study explores the spatiotemporal variations in water pollutant discharge in the YREB via two main indicators: chemical oxygen demand (COD) and ammonia nitrogen (NH₃–N). Further, the spatial effects and determinants of water pollutant discharge are quantitatively estimated. The results show that (1) the water pollutant discharge in the YREB has decreased significantly, with the COD and NH₃–N discharge reduced by 10.46% and 10.79%, respectively, and the discharge reduction in the lower reaches was the most prominent; (2) the spatial pattern of water pollutant discharge in the YREB was generally stable and partially improved, and cities with a high rate of water pollutant reduction in the YREB were distributed in the main stream region of the Yangtze River and the intersection of the main stream and tributaries; (3) spatial effects had a significant impact on water pollutant discharge in the YREB, with regional cooperation and economic radiation through environmental management and control initially showing a combined reduction trend in regional water pollutants; and (4) determinants of population size and agricultural economic share declined to varying degrees at the end of the study period, although the urbanization level continued to increase, indicating that urbanization in the YREB occurred too quickly and that water pollutant discharge reduction was limited. However, economic development leading to the deterioration of the water environment was alleviated. In addition, foreign direct investment (FDI) inflows and rapid industrialization processes must be monitored to increase the reduction in characteristic water pollutants.
اظهر المزيد [+] اقل [-]Impact of residual layer transport on air pollution in Beijing, China
2021
Liu, Yusi | Tang, Guiqian | Wang, Meng | Liu, Baoxian | Hu, Bo | Chen, Qi | Wang, Yuesi
The residual layer (RL) stores a large amount of pollutants, but its effect on near-surface pollution is unknown. In this study, a two-year continuous observation was performed in Beijing using a ceilometer. The generalized boundary layer includes the mixing layer and RL. The results showed that there is no significant seasonal difference in the generalized boundary layer height (GBLH). The average GBLHs in spring, summer, autumn and winter are 1155, 1139, 1036 and 1195 m, respectively. The diurnal variation characteristics of spring, summer and autumn are similar, and the RL disappears when the mixing layer height reaches its peak in the afternoon. In winter, the development of the mixing layer is weak, and there is a 33.8% chance that the RL cannot be breached, thus making the mixing layer height at noon much lower than the GBLH. The concentrations of PM₂.₅ in the mixing layer and RL are 89 and 52 μg m⁻³, respectively, and the probability that the PM₂.₅ concentration in the RL was higher than that near the ground was 38.9%. RL transport represents an important beginning of the pollution event during the winter mornings and afternoons in Beijing. This study is helpful to better understand the structure of the RL and its influence on air pollution.
اظهر المزيد [+] اقل [-]Acute respiratory response to individual particle exposure (PM1.0, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases
2021
Chen, Tianyi | Chen, Fei’er | Wang, Kan | Ma, Xuedong | Wei, Xinping | Wang, Weigang | Huang, Pengyu | Yang, Dong | Xia, Zhaolin | Zhao, Zhuohui
Limited data were on the acute respiratory responses in the elderly in response to personal exposure of particulate matter (PM). In order to evaluate the changes of airway inflammation and pulmonary functions in the elderly in response to individual exposure of particles (PM₁.₀, PM₂.₅ and PM₁₀), we analyzed 43 elderly subjects with either asthma, chronic obstructive pulmonary disease (COPD) or Asthma COPD Overlap (ACO) and 40 age-matched subjects without asthma nor COPD in an urban community in Shanghai, China. Data were collected at the baseline and in 6 follow-ups from August 2016 to December 2018, once every 3 months except for the last twice with a 6-month interval. In each follow-up, pulmonary functions, fractional exhaled nitric oxide (FeNO), 7-day continuous personal exposure to airborne particles were measured. Multivariate linear mixed effect regression models were applied to investigate the quantitative changes of pulmonary functions and FeNO in two respective groups. The results showed that on average 4.7 follow-up visits were completed in each participant. In subjects with CRDs, an inter-quartile range (IQR) increase of personal exposure to PM₁.₀, PM₂.₅ and PM₁₀ was significantly associated with an average increase of FeNO(Lag1) of 6.7 ppb (95%CI 1.2, 9.9 ppb), 6.2 ppb (95%CI 1.5, 12.0 ppb) and 5.6 ppb (95%CI 1.5, 11.0 ppb), respectively, and an average decrease of FEV1(Lag2) of −3.6 L (95%CI -6.0, −1.1 L), −3.6 L (95%CI -6.4, −0.8 L) and −3.2 L (95%CI -5.8, −0.6 L), respectively, in the single-pollutant model. These associations remained consistent in the two-pollutant models adjusting for gaseous air pollutants. Stratified analysis showed that subjects with lower BMI, females and non-allergies were more sensitive to particle exposure. No robust significant effects were observed in the subjects without CRDs. Our study provided data on the susceptibility of the elderly with CRDs to particle exposure of PM₁.₀ and PM₂.₅, and the modification effects by BMI, gender and history of allergies.
اظهر المزيد [+] اقل [-]Exposure to fine particulate matter-bound polycyclic aromatic hydrocarbons, male semen quality, and reproductive hormones: The MARCHS study
2021
Chen, Qing | Wang, Furong | Yang, Huan | Wang, Xiaogang | Zhang, Aihua | Ling, Xi | Li, Lianbing | Zou, Peng | Sun, Lei | Huang, Linping | Chen, Hongqiang | Ao, Lin | Liu, Jinyi | Cao, Jia | Zhou, Niya
Exposure to outdoor fine particulate matter (PM₂.₅)-bound polycyclic aromatic hydrocarbons (PAHs) is linked to reproductive dysfunction. However, it is unclear which component of PAHs is responsible for the adverse outcomes. In the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study, we measured the exposure levels of 16 PAHs by collecting air PM₂.₅ particles and assessed eight PAHs metabolites from four parent PAHs, including naphthalene, fluorene, phenanthrene, and pyrene in urine samples. We investigated compositional profiles and variation characteristics for 16 PAHs in PM₂.₅, and then assessed the association between PAHs exposure and semen routine parameters, sperm chromatin structure, and serum hormone levels in 1452 samples. The results showed that naphthalene (95% CI: −17.989, −8.101), chrysene (95% CI: −64.894, −47.575), benzo[a]anthracene (95% CI: −63.227, −45.936) and all the high molecular weight (HMW) PAHs in PM₂.₅ were negatively associated with sperm normal morphology. Most of the low molecular weight (LMW) PAHs, such as acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, ∑LMW PAHs and ∑16 PAHs, were correlated with increased sperm motility (all corrected P < 0.05). On the other hand, sperm normal morphology was all negatively associated with urinary metabolites of ∑OH-Nap (95% CI: −5.611, −0.536), ∑OH-Phe (95% CI: −5.741, −0.957), and ∑OH-PAHs (95% CI: −5.274, −0.361). Urinary concentrations of ∑OH-PAHs were found to be negatively associated with sperm high DNA stainability (HDS) (P = 0.023), while ∑OH-Phe were negatively associated with serum testosterone level and sperm HDS (P = 0.004). Spearman correlation analysis showed that except for the urinary OH-Nap metabolites, the rest of the urinary OH-PAHs metabolites were negatively correlated with their parent PAHs in air. The results of this study suggest that various PAHs’ components may affect reproductive parameters differently. Inhalation of PAHs in air, especially HMW PAHs, may be a potential risk factor for male reproductive health.
اظهر المزيد [+] اقل [-]Respiratory mortality associated with ozone in China: A systematic review and meta-analysis
2021
Zhang, Yifan | Ma, Yuxia | Feng, Fengliu | Cheng, Bowen | Shen, Jiahui | Wang, Hang | Jiao, Haoran | Li, Mingji
This systematic review and meta-analysis was performed to obtain updated evidence regarding the short-term effect of ozone on respiratory mortality in China. We systematically searched the Embase, PubMed, Scopus, Web of Science, China National Knowledge Internet, and Wanfang databases for relevant studies. After screening based on the inclusion criteria, 12 studies with 19 estimates were selected for further meta-analysis. The results revealed that respiratory mortality significantly increased by 0.55% (95% confidence interval: 0.24%–0.85%; Q = 39.47, I² = 54.4%, P = 0.002, tau² < 10⁻⁵) for every 10-μg/m³ increase in the maximum 8-h average concentration of ozone. Furthermore, differences in combined estimates were observed between various regions and lag structures. The combined effect of single-day lags was generally larger than that of multiday lags; the estimate of mortality for the population in the north was larger than that for the population in the south. The sensitivity analysis demonstrated that the main findings were stable; funnel plots with Egger’s and Begg’s tests indicated no significant publication bias in our analysis.
اظهر المزيد [+] اقل [-]Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)
2021
Johansen, Sverre | Poste, Amanda | Allan, Ian | Evenset, Anita | Carlsson, Pernilla
Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This study has investigated how secondary sources of POPs from land influence the occurrence and fate of POPs in an Arctic coastal marine system.Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant concentrations (<level of detection-28 pg/g dw ΣPCB₁₄, 16–100 pg/g dw HCB) compared to outer marine sediments 630-880 pg/g dw ΣPCB₁₄, 530–770 pg/g dw HCB). There was a strong spatial gradient in sediment PCB and HCB concentrations with lowest concentrations in river estuaries and in front of marine-terminating glaciers and increasing concentrations toward the outer fjord. This suggests that rather than leading to increased concentrations, inputs of SPM from land lead to a dilution of contaminant concentrations in nearshore sediments. Preliminary estimates of SPM:water activity ratios suggest that terrestrial particles (with low contaminant concentrations) may have the potential to act as sorbents of dissolved contaminants in the coastal water column, with implications for bioavailability of POPs to the marine food web. There is concern that ongoing increases in fluxes of freshwater, sediments and associated terrestrial material (including contaminants) from land to the Arctic Ocean will lead to increased mobilization and transport of POPs to coastal ecosystems. However, the results of this study indicate that on Svalbard, inputs from land may in fact have the opposite effect, leading to reduced concentrations in coastal sediments and waters.
اظهر المزيد [+] اقل [-]Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa
2021
Xie, En | Su, Yuping | Deng, Songqiang | Kontopyrgou, Maria | Zhang, Dayi
It is well-accepted that phosphorus, particularly orthophosphate, is a determinant factor in aquatic eutrophication. However, numerous kinds of phosphorus sources exist in real world scenario, and limited studies have characterized the pairwise relationships among abundant different phosphorus sources and the physiological behaviour of algae. The present study developed a high-throughput assay to investigate the effects of 59 different phosphorus sources (equal initial concentration of total phosphorus) on the growth and alkaline phosphatase (AKP) activities of Microcystis aeruginosa, a model cyanobacteria whose predominance holds sway in lake eutrophication. M. aeruginosa cultivated with nucleoside monophosphates (NMPs) had higher growth, relative AKP activities and residual orthophosphate, which were positively intercorrelated. Oppositely, non-NMPs cultivation of M. aeruginosa led to negative relationships between the relative AKP activities and their growth or residual orthophosphate. These results indicated distinct mechanisms for M. aeruginosa to utilize different phosphorus sources in real-world scenario, and both phosphorus source and content are determinant factors on the growth and physiological behaviour of M. aeruginosa. Given the complicated and vast phosphorus pool in the natural environment, phosphorus resources might significantly alter the abundance and physiological behaviour of M. aeruginosa and other bloom-forming algae, then influence the phytoplanktonic community structure and affect the possibility and intensity of algal bloom. Our work hints the underestimation of the restriction factors in lake eutrophication and provides a new tool to study the driven forces of phytoplanktonic community dynamics as phosphorus from both internal and external sources.
اظهر المزيد [+] اقل [-]Changes of δ15N values during the volatilization process after applying urea on soil
2021
Ti, Chaopu | Ma, Shutan | Peng, Lingyun | Tao, Limin | Wang, Xi | Dong, Wenxu | Wang, Liangjie | Yan, Xiaoyuan
Ammonia (NH₃) volatilized from soils plays an important role in N cycle and air pollution, thus it is important to trace the emission source and predict source contributions to development strategies mitigating the environmental harmful of soil NH₃ volatilization. The measurements of ¹⁵N natural abundance (δ¹⁵N) could be used as a complementary tool for apportioning emissions sources to resolve the contribution of multiple NH₃ emission sources to air NH₃ pollution. However, information of the changes of δ¹⁵N–NH₃ values during the whole volatilization process under different N application rates are currently lacking. Hence, to fill this gap, we conducted a 15-day incubation experiment included different urea-N application rates to determine δ¹⁵N values of NH₃ during volatilization process. Results showed that volatilization process depleted ¹⁵N in NH₃. The average δ¹⁵N value of NH₃ volatilized from the 0, 20, 180, and 360 kg N ha⁻¹ treatment was −16.2 ± 7.3‰, −26.0 ± 5.4‰, −34.8 ± 4.8‰, and −40.6 ± 5.7‰. Overall, δ¹⁵N–NH₃ values ranged from −46.0‰ to −4.7‰ during the whole volatilization process, with lower in higher urea-N application treatments than those in control. δ¹⁵N–NH₃ values during the NH₃ volatilization process were much lower than those of the primary sources, soil (−3.4 ± 0.1‰) and urea (−3.6 ± 0.1‰). Therefore, large isotopic fractionation may occur during soil volatilization process. Moreover, negative relationships between soil NH₄⁺-N and NH₃ volatilization rate and δ¹⁵N–NH₃ values were observed in this study. Our results could be used as evidences of NH₃ source apportionments and N cycle.
اظهر المزيد [+] اقل [-]Combined influences of transgenerational effects, temperature and insecticide on the moth Spodoptera littoralis
2021
Massot, Manuel | Bagni, Thibaut | Maria, Annick | Couzi, Philippe | Drozdz, Thomas | Malbert-Colas, Aude | Maïbèche, Martine | Siaussat, David
Climate warming is expected to impact the response of species to insecticides. Recent studies show that this interaction between insecticides and temperature can depend on other factors. Here, we tested for the influence of transgenerational effects on the Insecticide × Temperature interaction in the crop pest moth Spodoptera littoralis. Specifically, we analysed reaction norms among experimental clutches based on a split-plot design crossing the factors temperature, insecticide and clutch. The study was performed on 2280 larvae reared at four temperatures (23, 25, 27 and 29 °C), and their response to the insecticide deltamethrin (three concentrations and a control group) was tested. Temperature had a global influence with effects on larval survival, duration of development, pupal body mass, and significant reaction norms of the clutches for temperature variations of only 2 °C. In addition to the expected effect of deltamethrin on mortality, the insecticide slightly delayed the development of S. littoralis, and the effects on mortality and development differed among the clutches. Projection models integrating all the observed responses illustrated the additive effects of deltamethrin and temperature on the population multiplication rate. Variation in the response of the clutches showed that transgenerational effects influenced the impact of insecticide and temperature. Although no evidence indicated that the Insecticide × Temperature interaction depended on transgenerational effects, the studies on the dependence of the Insecticide × Temperature interaction on other factors continue to be crucial to confidently predict the combined effects of insecticides and climate warming.
اظهر المزيد [+] اقل [-]Site-scale modeling of surface ozone in Northern Bavaria using machine learning algorithms, regional dynamic models, and a hybrid model
2021
Nabavi, Seyed Omid | Nölscher, Anke C. | Samimi, Cyrus | Thomas, Christoph | Haimberger, Leopold | Lüers, Johannes | Held, Andreas
Ozone (O₃) is a harmful pollutant when present in the lowermost layer of the atmosphere. Therefore, the European Commission formulated directives to regulate O₃ concentrations in near-surface air. However, almost 50% of the 5068 air quality stations in Europe do not monitor O₃ concentrations. This study aims to provide a hybrid modeling system that fills these gaps in the hourly surface O₃ observations on a site scale with much higher accuracy than existing O₃ models. This hybrid model was developed using estimations from multiple linear regression-based eXtreme Gradient Boosting Machines (MLR-XGBM) and O₃ reanalysis from European regional air quality models (CAMS-EU). The binary classification of extremely high O₃ events and the 1- and 24-h forecasts of hourly O₃ were investigated as secondary aims. In this study thirteen stations in Northern Bavaria, out of which six do not monitor O₃, were chosen as test sites. Considering the computational complexity of machine learning algorithms (MLAs), we also applied two recent MLA interpretation methods, namely SHapley Additive exPlanations (SHAP) and Local interpretable model-agnostic explanations (LIME).With SHAP, we showed an increasing effect of temperature on O₃ concentrations which intensifies for temperatures exceeding 17 °C. According to LIME, O₃ concentration peaks are mainly governed by meteorological factors under dry and warm conditions on a regional scale, whereas local nitrogen oxide concentrations control base O₃ concentrations during cold and wet periods.While recently developed MLAs for the spatial estimation of hourly O₃ concentrations had a station-based root-mean-square error (RMSE) above 27 μg/m³, our proposed model significantly reduced the estimation errors by about 66% with an RMSE of 9.49 μg/m³. We also found that logistic regression (LR) and MLR-XGBM performed best in the site-scale classification and 24-h forecast of O₃ concentrations (with a station-averaged accuracy and RMSE of 0.95 and 19.34 μg/m³, respectively).
اظهر المزيد [+] اقل [-]