خيارات البحث
النتائج 2361 - 2370 من 4,929
Ecological footprint, urbanization, and energy consumption in South Africa: including the excluded
2019
Nathaniel, Solomon | Nwodo, Ozoemena | Adediran, Abdulrauf | Sharma, Gagan | Shah, Muhammad | Adeleye, Ngozi
The study explores the relationship between ecological footprint, urbanization, and energy consumption by applying the ARDL estimation technique on data spanning 1965–2014 for South Africa. After applying the unit root test that accounts for a break in the data, the Bayer and Hanck (J Time Ser Anal 34:83–95, 2013) combined cointegration test affirms cointegrating relationship among the variables. Findings further reveal that economic growth and financial development exact a deteriorating impact on the environment in the short run. However, the same was not true for both energy use and urbanization. While urbanization and energy use promote environmental quality in the long run, financial development and economic growth degrade it further. The long-run findings of our study are confirmed to be robust as reported by the fully modified OLS (FMOLS), dynamic OLS (DOLS), and the canonical cointegrating regression (CCR) estimates. The direction of causality supports the energy-led growth hypothesis for South Africa. Policy outcomes and directions, and the possibility of promoting sustainable growth without degrading the environment are discussed.
اظهر المزيد [+] اقل [-]Cyto(geno)toxicity of Commercial Fungicides Based on the Active Compounds Tebuconazole, Difenoconazole, Procymidone, and Iprodione in Lactuca sativa L. Meristematic Cells
2019
Aragão, Francielen Barroso | Bernardes, Paula Mauri | Ferreira, Adésio | Ferreira, Marcia Flores da Silva | Andrade-Vieira, Larissa Fonseca
The present work aimed to evaluate the effects of commercial fungicides containing the active compounds from the triazole group—tebuconazole (TBZ) and difenoconazole (DFZ)—and dicarboximide group—procymidone (PRD) and iprodione (IPD) on the mitotic cycle of the plant model Lactuca sativa L. These active compounds have been present in foods sampled at different Brazilian’s states and amounted higher than recommended by law. The bioassay with L. sativa was applied to access the toxicity and better understand the mechanisms of action of these compounds in living beings. The active principles IPD and DFZ presented mitodepressive effect, statistically reducing the MI at all applied concentrations in comparison to the negative control. TBZ was the most cytotoxic active compound tested inhibited in 77% mitotic active in the lowest concentration applied. PRD alter the frequency of mitotic cells only in the concentration above that recommended by the manufacture. C-metaphase and adherent chromosomes were the most frequent cell cycle alteration observed on the treated cells, followed by bridges and lost chromosomes. Therefore, the mechanism of action was mainly aneugenic (70%). For TBZ, the frequency of condensed nucleus was very expressive (313 higher than the negative control).
اظهر المزيد [+] اقل [-]Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings
2019
El-Wakil, Nahla A. | Hassan, Enas A. | Hassan, Mohammad L. | Abd El-Salam, Soheir S.
The present study describes the impregnation of coffee extract (CE) into bacterial cellulose synthesized from kombucha tea fungus (KBC) of different cellulose content, incubated for different incubation periods (2, 4, and 10 days), to prepare biocomposites having the potential for wound healing applications. Total polyphenols in hydroalcoholic extracts from ground roasted coffee and its release from the prepared biocomposites were determined as gallic acid equivalent. The polyphenols content was found to be 13.66 mg/g and the minimum inhibitory concentration (MIC) of the CE was determined using colony-forming unit (CFU) method against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus where the growth inhibition was 86 and 97% respectively. Biocomposites (KBC/CE) with the lowest cellulose and CE content showed the highest wet tensile stress (3.35 MPa), absorption of pseudo extracellular fluid (154.32% ± 4.84), and water vapor transmission rate (3184.94 ± 198.07 g/m²/day), whereas it showed the lowest polyphenols’ release (51.85% ± 2.94)when immersed in PBS buffer of pH 7.4. The impregnation of CE into KBC provided biocomposites that can enlarge the range of BC in the biomedical application.
اظهر المزيد [+] اقل [-]Performance and emission reduction characteristics of cerium oxide nanoparticle-water emulsion biofuel in diesel engine with modified coated piston
2019
Perumal Venkatesan, Elumalai | Kandhasamy, Annamalai | Sivalingam, Arularasu | Kumar, Appuraja Senthil | Ramalingam, KrishnaMoorthy | Joshua, Paul james thadhani | Balasubramanian, Dhinesh
In the present scenario, the utilization of petroleum fuel is expanding forcefully worldwide in the vitality store and plays a highly hazardous role in the ecological system. Biofuel stands out among the most tenable keys for this issue. The lemongrass oil is used as a biofuel because of low density and viscosity when compared with diesel. The lemongrass oil is extracted by steam distillation process. In the present investigation, partially stabilized zirconium, due to its higher thermal conductivity, is selected as coating material. The top surface of the piston and the inlet and exhaust valves are coated up to the preferred thickness of 500 μm by the plasma spray technique. The lemongrass emulsion fuel is prepared in the proportion of 94% of lemongrass oil, 5% of water, and 1% of surfactant span 80. The nanoparticles of cerium oxide were used with lemongrass oil (LGO) nano-emulsion in the measurement of 30 ppm. The four-stroke diesel engine execution, ignition, and the outflow extent were contrasted in the diesel and lemongrass oil (LGO) compared with the base diesel engine. The performance characteristic curves of lemongrass-cerium oxide nano-emulsion fuel show the increase in brake thermal efficiency of 17.21% when compared with the mineral diesel fuel. The emission characteristics of lemongrass-cerium oxide nano-emulsion fuel show a drop in hydrocarbon and carbon monoxide emission by 16.21% and 15.21%, respectively, when compared with base diesel fuel and also there is a decrease in oxides of nitrogen and smoke emission by 24.1% and 6.3%, respectively, when compared to mineral diesel fuel.
اظهر المزيد [+] اقل [-]Assessment of Pb2+ removal capacity of lichen (Evernia prunastri): application of adsorption kinetic, isotherm models, and thermodynamics
2019
Şenol, Zeynep Mine | Gül, Ülküye Dudu | Şimşek, Selçuk
Biological materials play a significant role in the treatment of heavy metal-contaminated soil and wastewater. In this study, the Pb²⁺ biosorption potential of lichen Evernia prunastri, extensively available at a forest in Bilecik-Turkey, was investigated at batch-scale level. The optimal conditions were determined and the adsorption isotherms, kinetics, and thermodynamic calculations were also done. In order to have detailed knowledge about metal biosorption, SEM, FTIR, and BET analyses were carried out before and after the biosorption process. The optimal pH was found pH 4 and the maximum metal uptake capacity was found as 0.067 mol kg⁻¹. The results of this study indicate that the lichen was effectively applied to the removal of Pb²⁺ process as an inexpensive biosorbent from industrial wastewater.
اظهر المزيد [+] اقل [-]Cytotoxic and genotoxic effects induced by enrofloxacin-based antibiotic formulation Floxagen® in two experimental models of bovine cells in vitro: peripheral lymphocytes and cumulus cells
2019
Anchordoquy, Juan Patricio | Anchordoquy, Juan Mateo | Nikoloff, Noelia | Gambaro, Rocío | Padula, Gisel | Furnus, Cecilia | Seoane, Analía
The in vitro effect of enrofloxacin (EFZ) was tested on two experimental somatic bovine cells in vitro: peripheral lymphocytes (PLs) and cumulus cells (CCs). The cytotoxicity and genotoxicity of this veterinary antibiotic were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, single-cell gel electrophoresis (SCGE) assay, and cytokinesis-block micronucleus cytome (CBMN cyt) assay. Cells were treated during 24 h, and three concentrations were tested (50 μg/mL, 100 μg/mL, 150 μg/mL). When EFZ was tested in PLs, the results demonstrated that the antibiotic was able to induce cell death and DNA damage with all concentrations. In addition, 50 μg/mL and 100 μg/mL EFZ increased frequencies of micronuclei (MNi). On the other hand, the highest EFZ concentration occasioned cellular cytotoxicity in CCs as evidenced by mitochondrial activity alterations. Nevertheless, EFZ was not able to induce DNA damage and MNi in CCs. These results represent the first experimental evidence of genotoxic and cytotoxic effects exerted by EFZ in bovine PLs and CCs.
اظهر المزيد [+] اقل [-]Sorption of Copper and Zinc from Aqueous Solution by Metabasalt Residue and its Mineralogical Behavior
2019
Dalacorte, Luana | Escosteguy, Pedro Alexandre Varella | Bortoluzzi, Edson Campanhola
Residues from mining, as metabasalt powder from amethyst exploration, can be used to improve soil properties. Although there is a high-load content of clay minerals in metabasalt, the effects of this residue on cooper (Cu²⁺) and zinc (Zn²⁺) sorption and desorption have not been studied. The aim of this work was to evaluate Cu²⁺ and Zn²⁺ sorption capacity of metabasalt powder and to discuss the mineralogical behavior facing this phenomenon. This residue sorption capacity was compared to reference clay minerals under two Cu²⁺ and Zn²⁺ concentrations (8 and 16 cmolc/kg) in a competitive system (Cu²⁺ + Zn²⁺). The sorption capacity was estimated by sequential desorption using cation exchange resin. A survey of mineralogical and Cu²⁺ and Zn²⁺ concentrations was performed on metabasalt before and after sorption, and after desorption tests. All materials sorbed higher amounts of Cu²⁺ than Zn²⁺. The sorption magnitude decreased in the following order: metabasalt > montmorillonite > illite > kaolinite. Cu²⁺ and Zn²⁺ desorption from metabasalt is lower than the standard clay minerals, since the metabasalt sorption sites are expandable interlayers of clay minerals. The relevance and application of our findings are critical in providing information for the management of metabasalt residue, suggesting potential use as a remediation agent in contaminated water, especially those with high Cu²⁺ and Zn²⁺ loading. It also suggests that the Cu²⁺ and Zn²⁺ enrichment of this residue could potentially be used for converting the metabasalt into a useful source of slow nutrient supply for agricultural soils.
اظهر المزيد [+] اقل [-]Leaching of Free and Conjugate Natural Estrogens in Soil Monoliths
2019
Casey, Francis X. M. | Selbie, Diana | Hakk, Heldur | Richards, Karl G.
Natural free estrogens found in animal manures are potent endocrine-disrupting compounds. Environmental detections can be caused by such processes as physical and chemical non-equilibrium and colloidal or conjugate facilitate transport. Antecedent or “legacy” concentrations of estrogens resident in soil may also contribute significantly to environmental detections. The objective of this study was to measure and understand the dominant causes contributing to estrogen detections in the environment from a grazed system. To achieve this objective, the effluent of undisturbed lysimeters constructed from soils of fields grazed by dairy cows (Bos taurus) was monitored for free and conjugated estrogens. Four lysimeters were dosed with urine (Urine) and four only received water (Control). Water transfer for all lysimeters was similar, and all lysimeters were near field capacity for the duration of the experiment. Rapid transport of a conservative bromide tracer suggested that preferential flow was an important physical non-equilibrium transport process. Free estrogens and conjugated estrogens (17β-estradiol (E2), estrone (E1), 17β-estradiol-17-sulfate (E2-17S), 17β-estradiol-3-glucuronide (E2-3G), estrone-sulfate (E1-S)) were detected in the source urine (E2 = 17,248 ng/L, E1 = 1006 ng/L, E2-3G = 967 ng/L, E2-17S = 886,456 ng/L, E1-S = 1730 ng/L). These same free and conjugated estrogens, in addition to estriol (E3), were all detected frequently in both Control and Urine lysimeters (detection concentration ranks: E3 > E2-17S = E2 > E2-3G = E1 = E1-3S). Total potential estrogenicity in the effluent of the Control and Urine was also similar, indicating the presence of antecedent estrogens was the dominant contribution to estrogenic detections. Additionally, the frequent detection of conjugates in the lysimeter effluent was important, because it indicated that conjugates were stable in soil but had greater potential mobility than free estrogens.
اظهر المزيد [+] اقل [-]Role of AM Fungi in the Uptake and Accumulation of Cd and Ni by Luffa aegyptiaca
2019
Kalam, Saqib Ul | Naushin, Fauzia | Bagyaraj, D. J. | Khan, Fareed A.
Sponge gourd (Luffa aegyptiaca) was grown in pots with and without inoculation with two arbuscular mycorrhizal (AM) fungi, viz., Glomus macrocarpum and Glomus monosporum singly and in combination. Seven-day-old plants were treated with 18.9 μg Cd g⁻¹ soil and 155.4 μg Ni g⁻¹ soil alone and in combination. At 90 days old stage, dry weight of root, shoot, and fruit; uptake of heavy metals in root, stem, leaves, and fruits; percent mycorrhizal root colonization; and spore number in the root zone were determined. When applied singly, the uptake of Cd and Ni in host plants was enhanced more effectively by G. monosporum than G. macrocarpum. The larger proportion of Cd uptake in uninoculated host was retained in the roots but in inoculated plants (with both Glomus sp.), major amounts of the Cd were translocated to the above ground parts including fruits. The leaves were the main sinks of Ni in inoculated plants. The overall tissue burden of both heavy metals in the host was enhanced relatively more effectively on association with G. monosporum as compared with G. macrocarpum. The uptake of Cd was relatively higher in plants treated with both the metals and both the AM fungi. Despite the relatively higher uptake of both the heavy metals in inoculated plants, the host dry weight was significantly higher compared with uninoculated plants. The percent mycorrhizal root colonization of the host by both AM fungi was higher in plants grown without either of the heavy metals. The combined application of both the heavy metals reduced the spore density in the root zone soil of host. The results show that the AM fungi enhanced the uptake of Cd and Ni by the host but alleviated the toxicity by promoting plant growth.
اظهر المزيد [+] اقل [-]The Azo Dye Degradation and Differences Between the Two Anodes on the Microbial Community in a Double-Anode Microbial Fuel Cell
2019
Long, Xizi | Cao, Xian | Liu, Shentan | Nishimura, Osamu | Li, Xianning
The anode configuration determined the performance of power generation and contaminant removal in microbial fuel cell (MFC). In this study, double anodes were constructed along an up-flow MFC for mitigating the suppression of refractory organic azo dye Reactive Brilliant Red X-3B and increasing the power output. Results revealed that high concentration of X-3B suppressed the power generation of MFC. The maximum power density decreased from 0.413 to 0.161 W/m³, and the inner resistance rose from 448 to 698 Ω. However, double anodes weakened the suppression of X-3B to the current generation. Compared with single anode, the attenuation of MFC current decreased from 48 to 40%. Meanwhile, the X-3B removal efficiency in double-anode MFC was 19.81% higher compared with a single-anode condition when the X-3B was 1000 mg/L. The degradation pathway analysis indicated that aromatic amines formation and further oxidation were achieved sequentially in the MFC. Furthermore, microbial communities in the lower and upper anodes were analyzed, revealing that the microorganisms in the lower anode were more inclined to degrade the pollutant, whereas those in the upper anode were more inclined to generate electricity. This double-anode structure showed the potential for large concentration range of azo dye removal and the current recovery in real textile wastewater.
اظهر المزيد [+] اقل [-]