خيارات البحث
النتائج 241 - 250 من 7,200
Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment النص الكامل
2022
Insian, Wittawat | Yabueng, Nuttipon | Wiriya, Wan | Chantara, Somporn
Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 μm, classified based on aerodynamic diameter (dₐₑ) as fine PMs (0.43 μm ≤ dₐₑ < 2.1 μm) and coarse PMs (2.1 μm ≤ dₐₑ < 9.0 μm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62–68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65–0.43 μm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5–6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65–0.43 μm) and a small peak at a coarse size range (5.8–4.7 μm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10⁻⁴ (rural) and 6.80 × 10⁻⁵ (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.
اظهر المزيد [+] اقل [-]Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review النص الكامل
2022
Ulhassan, Zaid | Bhat, Javaid Akhter | Zhou, Weijun | Senan, Ahmed M. | Alam, Pravej | Ahmad, Parvaiz
The excessive arsenic (As) accumulation in plant tissues enforced toxic impacts on growth indices. So, the utilization of As-contaminated food leads to risks associated with human health. For the reduction of As concentrations in foods, it is obligatory to fully apprehend the take up, accretion, transportation and toxicity mechanisms of As within plant parts. This metalloid impairs the plant functions by disturbing the metabolic pathways at physio-biochemical, cellular and molecular levels. Though several approaches were utilized to reduce the As-accumulation and toxicity in soil-plant systems. Recently, engineered nanoparticles (ENPs) such a zinc oxide (ZnO), silicon dioxide or silica (SiO₂), iron oxide (FeO) and copper oxide (CuO) have emerged new technology to reduce the As-accumulation or phytotoxicity. But, the mechanistic approaches with systematic explanation are missing. By knowing these facts, our prime focus was to disclose the mechanisms behind the As toxicity and its mitigation by ENPs in higher plants. ENPs relives As toxicity and its oxidative damages by regulating the transporter or defense genes, modifying the cell wall composition, stimulating the antioxidants defense, phytochelatins biosynthesis, nutrients uptake, regulating the metabolic processes, growth improvement, and thus reduction in As-accumulation or toxicity. Yet, As-detoxification by ENPs depends upon the type and dose of ENPs or As, exposure method, plant species and experimental conditions. We have discussed the recent advances and highlight the knowledge or research gaps in earlier studies along with recommendations. This review may help scientific community to develop strategies such as applications of nano-based fertilizers to limit the As-accumulation and toxicity, thus healthy food production. These outcomes may govern sustainable application of ENPs in agriculture.
اظهر المزيد [+] اقل [-]The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system النص الكامل
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system النص الكامل
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
Harmful algal blooms (HABs) are recurrent in the NW Patagonia fjords system and their frequency has increased over the last few decades. Outbreaks of HAB species such as Alexandrium catenella, a causal agent of paralytic shellfish poisoning, and Protoceratium reticulatum, a yessotoxins producer, have raised considerable concern due to their adverse socioeconomic consequences. Monitoring programs have mainly focused on their planktonic stages, but since these species produce benthic resting cysts, the factors influencing cyst distributions are increasingly gaining recognition as potentially important to HAB recurrence in some regions. Still, a holistic understanding of the physico-chemical conditions influencing cyst distribution in this region is lacking, especially as it relates to seasonal changes in drivers of cyst distributions, as the characteristics that favor cyst preservation in the sediment may change through the seasons. In this study, we analyzed the physico–chemical properties of the sediment (temperature, pH, redox potential) and measured the bottom dissolved oxygen levels in a “hotspot” area of southern Chile, sampling during the spring and summer as well as the fall and winter, to determine the role these factors may play as modulators of dinoflagellate cyst distribution, and specifically for the cysts of A. catenella and P. reticulatum. A permutational analysis of variance (PERMANOVA) showed the significant effect of sediment redox conditions in explaining the differences in the cyst assemblages between spring-summer and fall-winter periods (seasonality). In a generalized linear model (GLM), sediment redox potential and pH were associated with the highest abundances of A. catenella resting cysts in the spring-summer, however it was sediment temperature that most explained the distribution of A. catenella in the fall-winter. For P. reticulatum, only spring-summer sediment redox potential and temperature explained the variation in cyst abundances. The implications of environmental (physico-chemical) seasonality for the resting cysts dynamics of both species are discussed.
اظهر المزيد [+] اقل [-]The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system
Mercury may reduce the protective effect of sea fish consumption on serum triglycerides levels in Chinese adults: Evidence from China National Human Biomonitoring النص الكامل
2022
Wu, Bing | Qu, Yingli | Lu, Yifu | Ji, Saisai | Ding, Liang | Li, Zheng | Zhang, Miao | Gu, Heng | Sun, Qi | Ying, Bo | Zhao, Feng | Zheng, Xulin | Qiu, Yidan | Zhang, Zheng | Zhu, Ying | Cao, Zhaojin | Lv, Yuebin | Shi, Xiaoming
Sea fish contain omega-3 polyunsaturated fatty acids (omega-3 PUFAs) which have been found to reduce triglyceride (TG) levels. However, sea fish may contain pollutants such as mercury which cause oxidative stress and increase TG levels. Therefore, the relationship between sea fish and TG remains unclear. We aimed to explore whether blood mercury (BHg) can affect the effect of sea fish consumption frequency on TG level among Chinese adults. A total of 10,780 participants were included in this study. BHg levels were measured using inductively coupled plasma mass spectrometry (ICP-MS). The associations of sea fish consumption frequency with BHg and TG levels as well as the association of BHg with TG levels were evaluated using multiple linear regression. Causal mediation analysis was used to evaluate the mediation effect of BHg levels on the association of sea fish consumption frequency with TG levels. The frequency of sea fish consumption showed a negative association with TG level. Compared with the participants who never ate sea fish, the TG level decreased by 0.193 mmol/L in those who ate sea fish once a week or more [β (95%CI): −0.193 (−0.370, −0.015)]. Significant positive associations were observed of BHg with TG levels. With one unit increase of log2-transformed BHg, the change of TG level was 0.030 mmol/L [0.030 (0.009, 0.051)]. The association between sea fish consumption and TG was mediated by log2-transformed BHg [total effect = −0.037 (−0.074, −0.001); indirect effect = 0.009 (0.004, 0.015)], and the proportion mediated by log2-transformed BHg was 24.25%. BHg may reduce the beneficial effect of sea fish consumption frequency on TG levels among Chinese adults. Overall, sea fish consumption has more benefits than harms to TG.
اظهر المزيد [+] اقل [-]The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter النص الكامل
2022
Liu, Weijie | Hu, Tianpeng | Mao, Yao | Shi, Mingming | Cheng, Cheng | Zhang, Jiaquan | Qi, Shihua | Chen, Wei | Xing, Xinli
Identifying the bioavailability and release-desorption mechanism of heavy metals (HMs) in soil is critical to understand the release risk of HMs. Simultaneously, the mechanistic investigation of affecting the bioavailability of HMs in soil is necessary, such as the grain-size distribution and soil mineralogy. Herein, the bioavailability of HMs (Cu, Cd, Ni, Pb, and Zn) in different area soils near a typical copper-smelter was evaluated by the sequential extraction technique (BCR), diffusive gradients in thin-films (DGT), and DGT-induced fluxes in sediments (DIFS) model. Results showed that the HMs proportion of the residual fraction in all soils was the highest. The average bioavailability concentration (CDGT) of Cu and Cd in industrial soil was the highest, with 45.12 μg· L⁻¹ and 9.06 μg· L⁻¹. The result of DIFS model revealed that the decreased order of the mean value of desorption rate constant (K₋₁) was Cd > Zn > Ni > Cu > Pb, 5.91 × 10⁻⁵, 4.96 × 10⁻⁵, 2.89 × 10⁻⁵, 9.64 × 10⁻⁶, and 8.69 × 10⁻⁶, respectively. According to the spatial distribution of release potential (R-value), the release potential of labile-Cu in agricultural soil was the highest, which was mainly attributed to fertilizer application in farmland. Simultaneously, the reduced hydroxyl was also related to the agricultural activities, resulting in the weakened adsorption capacity of HMs by soil. Redundancy analysis (RDA) results showed that the bioavailability of Cd, Ni, and Zn was mainly driven by soil pH, while the bioavailability of Cu and Pb was primarily driven by dissolved organic carbon (DOC). Meanwhile, carbonate minerals had a positive correlation with the bioavailability of Cd, Ni, and Zn, which could promote the release of HMs in mining soil as chemical weathering progresses. In conclusion, this study provides a structured method which can be used as a standard approach for similar scenarios to determine the geochemical fractionation, bioavailability, and release kinetics of heavy metals in soils.
اظهر المزيد [+] اقل [-]Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis النص الكامل
2022
Huo, Yuxin | Dijkstra, Feike A. | Possell, Malcolm | Singh, Balwant
The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 μm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 μm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.
اظهر المزيد [+] اقل [-]Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water النص الكامل
2022
Abdullah, Thamer Adnan | Juzsakova, Tatjána | Le, Phuoc-Cuong | Kułacz, Karol | Salman, Ali D. | Rasheed, Rashed T. | Mallah, Muhammad Ali | Varga, Béla | Mansoor, Hadeel | Mako, Eva | Zsirka, Balázs | Nadda, Ashok Kumar | Nguyen, X Cuong | Nguyen, D Duc
Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H₂SO₄ and HNO₃, and the oxidized MWCNTS were decorated with magnetite (Fe₃O₄). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.
اظهر المزيد [+] اقل [-]Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species النص الكامل
2022
Paolacci, Simona | Stejskal, Vlastimil | Toner, Damien | Jansen, Marcel A.K.
The aquaculture industry is considered a key sector for the supply of high quality, nutritious food. However, growth of the aquaculture sector has been slow, particularly in Europe, and this is amongst others linked to concerns about environmental impacts of this industry. Integrated Multitrophic Aquaculture (IMTA) has been identified as an important technology to sustainably improve freshwater fish production. In IMTA, economically valuable extractive species feed on waste produced by other species, remediating wastewater, and minimising the environmental impact of aquaculture. This study presents quantitative information on the nitrogen and phosphorus removal efficiency of a duckweed-based, pilot, semi-commercial IMTA system. Duckweed species are free-floating freshwater species belonging to the family of Lemnaceae. The aim of this study was to test the potential of duckweed-based IMTA under realistic environmental conditions. Three different approaches were used to assess remediation capacity; 1) assessment of water quality pre and post treatment with duckweed showed that the system can remove 0.78 and 0.38 T y⁻¹ of Total Nitrogen (TN) and Total Phosphorus (TP), respectively 2) based on nitrogen and phosphorus content of newly grown duckweed biomass, it was shown that 1.71 and 0.22 T y⁻¹ of TN and TP can be removed, respectively 3) extrapolation based on laboratory established nitrogen and phosphorus uptake rates determined that 0.88 and 0.08 T y⁻¹ of TN and TP can be removed by the system. There is substantive agreement between the three assessments, and the study confirms that duckweed can maintain good quality water in an IMTA system, while yielding high protein content (21.84 ± 2.45%) biomass. The quantitative data on nitrogen and phosphorus removal inform the design of further IMTA systems, and especially create a scientific basis to determine the balance between aquaculture and extractive species.
اظهر المزيد [+] اقل [-]Exposure to multiple metals and the risk of dyslexia - A case control study in Shantou, China النص الكامل
2022
Huang, Anyan | Zhang, Jingbing | Wu, Kusheng | Liu, Caixia | Huang, Qingjun | Zhang, Xuanzhi | Lin, Xuecong | Huang, Yanhong
Environmental heavy metal exposure has been considered to be the risk factor for neurodevelopmental disorders in children. However, the available data on the associations between multiple metals exposure and the risk of dyslexia in China are limited. The purpose of our study was to examine the associations between urinary metal concentrations and Chinese dyslexia risk. A total of 56 Chinese dyslexics and 60 typically developing children were recruited. The urinary concentration of 13 metals were measured by inductively coupled plasma-mass spectrometer (ICP-MS). Binary logistic regression and the Probit extension of Bayesian kernel machine regression (BKMR-P) were used to explore the associations between multiple metal exposure and the risk of Chinese dyslexia. Our results indicated that Co, Zn and Pb were significantly associated with Chinese dyslexia in the multiple-metal exposure model. After adjusting the covariates, a positive association was observed between Pb and the risk of Chinese dyslexia, with the odds ratio (OR) in the highest quartiles of 6.81 (95%CI: 1.07–43.19; p–trend = 0.024). Co and Zn were negatively associated with the risk of Chinese dyslexia. Compared to the lowest quartile, the ORs of Co and Zn in the highest quartile are 0.13 (95%CI: 0.02–0.72; p–trend = 0.026) and 0.18 (95%CI: 0.04–0.88; p–trend = 0.038), respectively. In addition, BKMR-P analysis indicated that with the cumulative level across Co, Zn and Pb increased, the risk of Chinese dyslexia gradually declined and then rebounded, albeit non-significantly, and Pb was the major contributor in this association. In general, the urinary concentrations of Co, Zn and Pb were significantly associated with Chinese dyslexia. More prospective studies are needed to confirm the health effects of multiple metals exposure in children with Chinese dyslexia.
اظهر المزيد [+] اقل [-]Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis النص الكامل
2022
Ullah, Fahim | Ji, Guozhao | Irfan, Muhammad | Gao, Yuan | Shafiq, Farishta | Sun, Ye | Ain, Qurat Ul | Li, Aimin
The massive generation of medical waste (MW) results in a series of environmental, social, and ecological problems. Pyrolysis is one such approach that has attracted more attention because of the production of value-added products with lesser environmental risk. In this study, the activated biochar (ABC600) was obtained from MW pyrolysis and activated with KOH. The adsorption mechanism of activated biochar on cationic (methylene blue) and anionic (reactive yellow) dyes were studied. The physicochemical characterization of biochar showed that increasing pyrolysis temperature and KOH activation resulted in increased surface area, a rough surface with a clear porous structure, and sufficient functional groups. MB and RYD-145 adsorption on ABC600 was more consistent with Langmuir isotherm (R² ≥ 0.996) and pseudo-second-order kinetics (R² ≥ 0.998), indicating chemisorption with monolayer characteristics. The Langmuir model fitting demonstrated that MB and RYD-145 had maximum uptake capacities of 922.2 and 343.4 mg⋅g⁻¹. The thermodynamics study of both dyes showed a positive change in enthalpy (ΔH°) and entropy (ΔS°), revealing the endothermic adsorption behavior and randomness in dye molecule arrangement on activated-biochar/solution surface. The activated biochar has excellent adsorption potential for cationic and anionic dyes; hence, it can be considered an economical and efficient adsorbent.
اظهر المزيد [+] اقل [-]