خيارات البحث
النتائج 2491 - 2500 من 4,033
Development of a new portable air sampler based on electrostatic precipitation
2016
Roux, J. M. | Sarda-Estève, R. | Delapierre, G. | Nadal, M. H. | Bossuet, C. | Olmedo, L.
Airborne particles are known to cause illness and to influence meteorological phenomena. It is therefore important to monitor their concentrations and to identify them. A challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a device as simple and small as possible to be used easily and everywhere. Electrostatic precipitation is an efficient method to collect all kinds of airborne particles. Furthermore, this method can be miniaturized. A portable, silent, and autonomous air sampler based on this technology is therefore being developed with the final objective to collect very efficiently airborne pathogens such as supermicron bacteria but also submicron viruses. Particles are collected on a dry surface so they may be concentrated afterwards in a small amount of liquid medium to be analyzed. It is shown that nearly 98 % of airborne particles from 10 nm to 3 μm are collected.
اظهر المزيد [+] اقل [-]Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems
2016
García-Salgado, Sara | Quijano, M Ángeles
Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L⁻¹ calcium chloride (CaCl₂), 0.43 mol L⁻¹ acetic acid (CH₃COOH), and 0.05 mol L⁻¹ ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl₂ and EDTA extractions and 15 min for CH₃COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl₂ and EDTA extractions and 15 min at 120 °C for CH₃COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.
اظهر المزيد [+] اقل [-]Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil
2016
Ali, Nedaa | Dashti, Narjes | Salamah, Samar | Al-Awadhi, Husain | Sorkhoh, Naser | Raḍwān, Samīr Muḥammad
Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2–4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO₃ (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of “autochthonous bioaugmentation.” Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation “allochthonous bioaugmentation.”
اظهر المزيد [+] اقل [-]Composition and morphology characterization of exopolymeric substances produced by the PAH-degrading fungus of Mucor mucedo
2016
Jia, Chunyun | Li, Xiaojun | Allinson, Graeme | Liu, Changfeng | Gong, Zongqiang
To explore the role of exopolymeric substances (EPS) in the process of polycyclic aromatic hydrocarbons (PAH) biodegradation, the characteristics of EPS isolated from a PAH-degrading fungus were investigated firstly by spectrometric determination, microscopic observation, Fourier transform-infrared spectroscopy (FT-IR), and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), and then the PAH-degrading ability of isolated EPS was evaluated. The EPS compositions and morphology varied significantly with the extraction methods. EPS were mainly composed of proteins, carbohydrate, and humic-like substances, and the cation exchange resin (CER)-extracted EPS were granular while other EPS samples were all powders. Heating was the most effective treatment method, followed by the CER, centrifugation, and ultrasonication methods. However, 3D-EEM data demonstrated that heating treatment makes the mycelia lyse the most. Overall, therefore, the CER was the best EPS extraction method for Mucor mucedo (M. mucedo). The PAH degradation results indicated that 87 % of pyrene and 81 % of benzo[a]pyrene (B[a]P) were removed by M. mucedo over 12 days and 9 % more pyrene and 7 % more B[a]P were reduced after CER-extracted EPS addition of 465 mg l⁻¹. The investigation of EPS characterization and EPS enhancing PAH biodegradation is the premise for further in-depth exploration of the role of EPS contribution to PAH biodegradation.
اظهر المزيد [+] اقل [-]The pollutants from livestock and poultry farming in China—geographic distribution and drivers
2016
Gan, Ling | Hu, Xisheng
Livestock and poultry farming is a major source of agricultural pollution. However, our knowledge of the constraining factors of the geographic distribution of pollutants from livestock and poultry farming is still limited. In this study, using the optimized pollutant generation coefficients, we estimated the annual pollutant productions of eight livestock and poultry species at the provincial level in 2005 and 2013 and their growth rates during the study period in China; using canonical correlation analysis, we also explored the association between the eight pollutant measurements as dependent variables and 14 factors (including resource endowment, developmental level, and economic structure factors) as independent variables. Results indicate that there exist spatial disparity in the distribution of pollutants from livestock and poultry farming across regions, with provinces in the Huang-Huai-Hai region and the southwestern region accounting for approximately 50 % of the total productions in the nation. Cattle, pig, and poultry constitute the primary pollution sources in terms of livestock and poultry farming not only at the national level but also at the province level. While the species constitute and their respective growth rates of the pollutants can be also characterized by spatial disparity across regions, canonical correlation analysis shows that the observed regional patterns of the pollutants can be largely explained by the resource endowment factors (positive effects) and the developmental level factors (negative effects). In addition, we found that the development of livestock and poultry farming is negatively associated with the growing rate of both the resource endowment and the socioeconomic factors. This indicates that there exist different driving patterns in the gross and increment of the pollutant productions. Our research has significant implications for the appropriate environmental protection policy formulation and implementation in livestock sector.
اظهر المزيد [+] اقل [-]Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil)
2016
Bidone, Edison | Castilhos, Zuleica | Cesar, Ricardo | Santos, Maria Carla | Sierpe, Ricardo | Ferreira, Marcos
The aim of this study is to evaluate total arsenic (As) concentrations in drinking water (main pathway of human exposure) and its hydrogeochemical controls in the “Morro do Ouro” gold mine region, which is the largest gold mine in Brazil, characterized by gold-arsenopyrite association. Arsenic concentration was generally below the detection limit (LOD < 0.5 μg L⁻¹). Thus, water ingestion may not be a significant exposure pathway to local population. Low groundwater As concentrations (<1 μg L⁻¹) are likely due to ore body structural setting, which plunges from 10° to >20°, being readily covered by thick phyllites that are poor in As some hundreds of meters away from the mine. Thirty-five percent of As levels in superficial waters (<0.5 to 40 μg L⁻¹) were >10 μg L⁻¹, which is the maximum permissible value for human ingestion. The highest concentrations were found nearby mine facilities and old artisanal mining areas surrounding the mine, decreasing downstream. Undisturbed watersheds showed As concentrations close to LOD. Hydrogeochemical data stress the sorption (adsorption and co-precipitation) of As role, mainly by Fe oxyhydroxides, as a geochemical filter that retains As, attenuating its concentration in both superficial and groundwater. Such minerals are abundant in the region oxisols, sediments, and phyllites and may form stable mineral complexes with As under the pH (mostly neutral) and Eh (reduced environment) conditions found in the field. It has been demonstrated that As(III) (more toxic) and As(V) co-exist in the analyzed waters and that As(V) predominates in superficial water.
اظهر المزيد [+] اقل [-]Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation
2016
Islam, Faisal | Yasmeen, Tahira | Qāsim ʻAlī Nīshāpūrī, | Nūrzād, Muḥammad Mubīn | Ali, Shafaqat | Arif, Muhammad Saleem | Ḥussain, Ṣābir | Riaz, Muhammad | Abbas, Farhat
For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C ᵢ , g ₛ , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H₂O₂ contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.
اظهر المزيد [+] اقل [-]Assessment of crude oil biodegradation in arctic seashore sediments: effects of temperature, salinity, and crude oil concentration
2016
Sharma, Priyamvada | Schiewer, Silke
The expected increase in offshore oil exploration and production in the Arctic may lead to crude oil spills along arctic shorelines. To evaluate the potential effectiveness of bioremediation to treat such spills, oil spill bioremediation in arctic sediments was simulated in laboratory microcosms containing beach sediments from Barrow (Alaska), spiked with North Slope Crude, and incubated at varying temperatures and salinities. Biodegradation was measured via respiration rates (CO₂ production); volatilization was quantified by gas chromatography/mass spectrophotometry (GC/MS) analysis of hydrocarbons sorbed to activated carbon, and hydrocarbons remaining in the sediment were quantified by GC/flame ionization detector (FID). Higher temperature leads to increased biodegradation by naturally occurring microorganisms, while the release of volatile organic compounds was similar at both temperatures. Increased salinity had a small positive impact on crude oil removal. At higher crude oil dosages, volatilization increased, however CO₂ production did not. While only a small percentage of crude oil was completely biodegraded, a larger percentage was volatilized within 6–9 weeks.
اظهر المزيد [+] اقل [-]Synergistic effect of photocatalysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite
2016
Sun, Zhenya | He, Xiaojun | Du, Jianhua | Gong, Wenqi
We report a significant synergistic effect of photocatalysis and adsorption by depositing 3–6 nm TiO₂ particles onto sulfanyl (HS)/activated carbon composite using molecular self-assemble method in low-temperature aqueous system. The synergistic effect was studied by comparing pure TiO₂ and TiO₂/sulfanyl/activated carbon composite to photocatalytic degrade methylene blue (MB) in a quartz glass reactor. The results showed that the photocatalytic activity of the TiO₂/HS/AC composite compared to pure TiO₂ has been greatly enhanced calculated from a simulated first-order kinetics model. The synergistic enhancement at low MB concentration was significantly stronger than that at high concentration, and the synergistic effect calculated from the model at initial concentration of 1 mg/L was approximately 64 times than at initial concentration of 15 mg/L. This is because when the adsorption rate was much faster than the photocatalytic degradation rate, strong adsorption of MB molecules may inhibit subsequent photocatalytic degradation reaction. The enhancement was found mainly due to the strong synergistic effect of the adsorption of MB of sulfanyl/activated carbon substrate and the photocatalysis of TiO₂ nanoparticles.
اظهر المزيد [+] اقل [-]Acute, chronic and biochemical effects of chlorothalonil on Agalychnis callidryas, Isthmohyla pseudopuma and Smilisca baudinii tadpoles
2016
Mendez, Michael | Obando, Priscilla | Pinnock-Branford, Margaret | Ruepert, Clemens | Castillo, Luisa E. | Mena, Freylan | Alvarado, Gilbert
Declines of amphibian populations have been a worldwide issue of concern for the scientific community during the last several decades. Efforts are being carried out to elucidate factors related to this phenomenon. Among these factors, pathogens, climate change, and environmental pollution have been suggested as possible causes. Regarding environmental pollutants, some pesticides are persistent in the environment and capable of being transported long distances from their release point. In Costa Rica, some pesticides have been detected in protected areas, at locations where amphibian populations have declined. Information about toxicity of pesticides used in Costa Rican agriculture to amphibians is still scarce, particularly for native species.Toxicity tests with chlorothalonil, a fungicide intensively used in Costa Rica, were carried out exposing tadpoles of three Costa Rican native species: Agalychnis callidryas, Isthmohyla pseudopuma, and Smilisca baudinii in order to evaluate acute and chronic toxicity as well as the biomarkers cholinesterase activity (ChE), glutathione-S transferase activity (GST), and lipid peroxidation (LPO).96-h LC₅₀: 26.6 (18.9–35.8) μg/L to A. callidryas, 25.5 (21.3–29.7) μg/L to I pseudopuma and 32.3 (26.3–39.7) μg/L to S. baudinii were determined for chlorothalonil. These three species of anurans are among the most sensitive to chlorothalonil according to the literature. Besides, GST was induced in S. baudinii after exposure to sub-lethal concentrations of chlorothalonil while evisceration occurred in S. baudinii and A. callidryas tadpoles exposed to lethal concentrations of the fungicide. Chronic exposure to sub-lethal concentrations accelerated development in S. baudinii and caused lesions in tail of S. baudinii and I. pseudopuma tadpoles. Our results demonstrate that chlorothalonil is highly toxic to native amphibian species and that low concentrations can cause biochemical responses related to phase II of biotransformation and effects on development.
اظهر المزيد [+] اقل [-]