خيارات البحث
النتائج 251 - 260 من 4,929
Removal characteristics of a composite active medium for remediation of nitrogen-contaminated groundwater and metagenomic analysis of degrading bacteria
2019
Li, Shuo | Zhang, Yuling | Qian, Hong | Deng, Zhiqun | Wang, Xi | Yin, Siqi
To investigate the removal characteristics of ammonium-nitrogen (NH₄⁺-N), nitrite-nitrogen (NO₂⁻-N), nitrate-nitrogen (NO₃⁻-N), and total nitrogen from groundwater by a degradable composite active medium, kinetics, thermodynamics, and equilibrium adsorption, experiments were performed using scoria and degrading bacteria immobilized on scoria. Removal of NH₄⁺-N, NO₂⁻-N, and NO₃⁻-N was conducted in adsorption experiments using different times, initial concentrations, pH values, and groundwater chemical compositions (Ca²⁺, Mg²⁺, HCO₃⁻, CO₃²⁻, Fe²⁺, Mn²⁺, and SO₄²⁻). The results showed that the removal of nitrogen by the composite active medium was obviously better than that of scoria alone. The removal rates of NH₄⁺-N (C₀ = 5 mg/L), NO₂⁻-N (C₀ = 5 mg/L), and NO₃⁻-N (C₀ = 100 mg/L) by the composite active medium within 1 h were 96.05%, 82.40%, and 83.16%, respectively. The adsorption kinetics were well fitted to a pseudo-second order model, whereas the equilibrium adsorption agreed with the Freundlich model. With changes in the pH, variation in the removal could be attributed to the combined effect of hydrolysis and competitive ion adsorption, and the optimum pH was 7. Different concentration conditions, hardness, alkalinity, anions, and cations showed different promoting and inhibiting effects on the removal of nitrogen. A careful examination of ionic concentrations in adsorption batch experiments suggested that the sorption behavior of nitrogen onto the immobilized medium was mainly controlled by ion exchange. The degrading bacteria on the scoria surface were eluted and analyzed by metagenomic sequencing. There were significant differences in the number of operational taxons, relative abundances, and community diversity among degrading bacteria after adsorption of the three forms of nitrogen. The relative abundance of degrading bacteria was highest after NO₃⁻-N removal, and the diversity was highest after NO₂⁻-N removal. Pseudomonas and Serratia were the dominant genera that could efficiently remove NH₄⁺-N and NO₂⁻-N.
اظهر المزيد [+] اقل [-]Different cardiorespiratory effects of indoor air pollution intervention with ionization air purifier: Findings from a randomized, double-blind crossover study among school children in Beijing
2019
Dong, Wei | Liu, Shan | Chu, Mengtian | Zhao, Bin | Yang, Di | Chen, Chen | Miller, Mark R. | Loh, Miranda | Xu, Junhui | Chi, Rui | Yang, Xuan | Guo, Xinbiao | Deng, Furong
Indoor air pollution is associated with numerous adverse health outcomes. Air purifiers are widely used to reduce indoor air pollutants. Ionization air purifiers are becoming increasingly popular for their low power consumption and noise, yet its health effects remain unclear. This randomized, double-blind crossover study is conducted to explore the cardiorespiratory effects of ionization air purification among 44 children in Beijing. Real or sham purification was performed in classrooms for 5 weekdays. Size-fractionated particulate matter (PM), black carbon (BC), ozone (O₃), and negative air ions (NAI) were monitored, and cardiorespiratory functions were measured. Mixed-effect models were used to establish associations between exposures and health parameters. Real purification significantly decreased PM and BC, e.g. PM₀.₅, PM₂.₅, PM₁₀ and BC were decreased by 48%, 44%, 34% and 50%, respectively. O₃ levels were unchanged, while NAI was increased from 12 cm⁻³ to 12,997 cm⁻³. Real purification was associated with a 4.4% increase in forced exhaled volume in 1 s (FEV₁) and a 14.7% decrease in fractional exhaled nitrogen oxide (FeNO). However, heart rate variability (HRV) was altered negatively. Interaction effects of NAI and PM were observed only on HRV, and alterations in HRV were greater with high NAI. Ionization air purifier could bring substantial respiratory benefits, however, the potential negative effects on HRV need further investigation.
اظهر المزيد [+] اقل [-]Light absorption of organic carbon and its sources at a southeastern U.S. location in summer
2019
Xie, Mingjie | Chen, Xi | Holder, Amara L. | Hays, Michael D. | Lewandowski, Michael | Offenberg, John H. | Kleindienst, Tadeusz E. | Jaoui, Mohammed | Hannigan, Michael P.
Light-absorbing organic carbon (OC), also referred to as “brown carbon” (BrC), has been intensively investigated in atmospheres impacted by biomass burning. However, other BrC sources (e.g., secondary formation in the atmosphere) are rarely studied in ambient aerosols. In the current work, forty-five PM₂.₅ filter samples were collected in Research Triangle Park (RTP), NC, USA from June 1st to July 15th, 2013. The bulk carbonaceous components, including OC, elemental carbon (EC), water soluble OC (WSOC), and an array of organic molecular markers were measured; an ultraviolet/visible spectrometer was used to measure the light absorption of methanol extractable OC and WSOC. The average light absorption per OC and WSOC mass of PM₂.₅ samples in summer RTP are 0.36 ± 0.16 m² gC⁻¹ and 0.29 ± 0.13 m² gC⁻¹, respectively, lower than the ambient aerosol samples impacted by biomass burning and/or fossil fuel combustion (0.7–1.6 m² gC⁻¹) from other places. Less than 1% of the aqueous extracts absorption is attributed to the light-absorbing chromophores (nitroaromatic compounds) identified in this work. To identify the major sources of BrC absorption in RTP in the summer, Positive Matrix Factorization (PMF) was applied to a dataset containing optical properties and chemical compositions of carbonaceous components in PM₂.₅. The results suggest that the formation of biogenic secondary organic aerosol (SOA) containing organosulfates is an important BrC source, contributing up to half of the BrC absorption in RTP during the summertime.
اظهر المزيد [+] اقل [-]Creating a hierarchy of hazard control for urban stormwater management
2019
Ma, Yukun | Deilami, Kaveh | Egodawatta, Prasanna | Liu, An | McGree, James | Goonetilleke, Ashantha
Urban stormwater reuse is becoming increasingly prevalent to overcome the serious urban water scarcity being experienced around the world. Therefore, the adoption of reliable approaches to minimise the human health risk posed by pollutants commonly present in urban stormwater such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) is critical for safe stormwater reuse. This study collected a total of 40 pollutant build-up samples and analysed the concentrations of nine heavy metals and 15 PAH species. Based on pollutant build-up data, pollutant concentrations in stormwater were estimated through modelling. Risk assessment was conducted using an existing model developed by previous studies. The study outcomes confirmed that simply evaluating the individual pollutant concentrations based on guideline threshold values cannot comprehensively estimate the overall human health risk posed by these pollutants. Accordingly, it is recommended that the assessment of the overall human health risk should be based on the pollutant mix present as provided by the models discussed in this paper. The study has also demonstrated the practical application of a robust risk assessment model to derive the hierarchy of hazard control to provide a reliable underpinning to urban stormwater risk management. The outcomes suggest that decentralised hazard control methods such as the provision of custom designed Water Sensitive Urban Design (WSUD) measures can be implemented in priority areas with high risk from stormwater pollution based on the risk assessment undertaken. Distributed hazard control methods can be applied to reduce the generation of primary toxic pollutants, especially chromium (Cr) and heavy PAHs, through elimination and substitution measures. The percentage reduction in traffic volume required to mitigate the human health risk can be quantified through the risk models presented. The study outcomes will contribute to the development of efficient, targeted and reliable stormwater management strategies and to identify viable opportunities for stormwater reuse.
اظهر المزيد [+] اقل [-]Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation
2019
Sun, Yang | Zhao, Lixia | Li, Xiaojing | Hao, Yueqi | Xu, Huijuan | Weng, Liping | Li, Yongtao
Degradation of metolachlor in surface soil is extremely important to its potential mobility and overall persistence. In this study, the effects of earthworms (Eisenia fetida) on the degradation of metolachlor at two concentration levels (5 and 20 mg kg⁻¹) in soil were investigated via the column experiment. The degradation kinetics of metolachlor indicate that addition of earthworms enhances metolachlor degradation significantly (P < 0.05), with the enhanced degradation rate of 30% and 63% in the low and high concentration treatments at the 15th day, respectively. Fungi rather than bacteria are primarily responsible for metolachlor degradation in soil, and earthworms stimulate metolachlor degradation mainly by stimulating the metolachlor-degrading functional microorganisms and improving fungal community structure. Earthworms prefer to promote the possible fungal degraders like order Sordariales, Microascales, Hypocreales and Mortierellales and the possible bacteria genus Rubritalea and strengthen the relationships between these primary fungi. Two metabolites metolachlor oxanilic (MOXA) and moetolachlor ethanesulfonic acid (MESA) are detected in soil and earthworms in the high concentration treatments. Earthworms stimulate the formation of MOXA and yet inhibit the formation of MESA in soil. Another metabolite metolachlor-2-hydroxy (M2H) is also detected in earthworms, which is reported firstly. The study provides an important information for the remediation of metolachlor-polluted soil.
اظهر المزيد [+] اقل [-]Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration
2019
Ryu, Jeongeun | Kim, Jeong Jae | Byeon, Hyeokjun | Go, Taesik | Lee, Sang Joon
Reduction of particulate matter (PM) has emerged as one of the most significant challenges in public health and environment protection worldwide. To address PM-related problems and effectively remove fine particulate matter (PM2.5), environmentalists proposed tree planting and afforestation as eco-friendly strategies. However, the PM removal effect of plants and its primary mechanism remains uncertain. In this study, we experimentally investigated the PM removal performance of five plant species in a closed chamber and the effects of relative humidity (RH) caused by plant evapotranspiration, as a governing parameter. On the basis of the PM removal test for various plant species, we selected Epipremnum aureum (Scindapsus) as a representative plant to identify the PM removal efficiency depending on evapotranspiration and particle type. Results showed that Scindapsus yielded a high PM removal efficiency for smoke type PM2.5 under active transpiration. We examined the correlation of PM removal and relative humidity (RH) and evaluated the increased effect of RH on PM2.5 removal by using a plant-inspired in vitro model. Based on the present results, the increase of RH due to evapotranspiration is crucial to the reduction of PM2.5 using plants.
اظهر المزيد [+] اقل [-]Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China
2019
Dong, Zhiwen | Qin, Dahe | Li, Kaiming | Kang, Shichang | Wei, Ting | Lu, Junfeng
Pollutants, which are usually transported from urban cities to remote glacier basins, and aerosol impurities affect the earth's temperature and climate by altering the radiative properties of the atmosphere. This work focused on the physicochemical properties of atmospheric pollutants across the urban and remote background sites in northwest China. Information on individual particles was obtained using transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX). Particle size and age-dependent mixing structures of individual particles in clean and polluted air were investigated. Aerosols were classified into eight components: mineral dust, black carbon (soot)/fly ash, sulfates, nitrates, NaCl salt, ammonium, organic matter, and metals. Marked spatial and seasonal changes in individual particle components were observed in the study area. Aerosol particles were generally found to be in the mixing state. For example, salt-coated particles in summer accounted for 31.2–44.8% of the total particles in urban sites and 37.5–74.5% of the total particles in background sites, while in winter, almost all urban sites comprised >50%, which implies a significant effect on the radiative forcing in the study area. We found that in PM₂.₅ section, the internally mixed black carbon/organic matter particles clearly increased with diameter. Moreover, urban cities were characterized by atmospheric particles sourced from anthropogenic activities, whereas background locations exhibited much lower aerosol concentrations and increased particle density, originating from natural crustal sources (e.g., mineral dust and NaCl salt), which, together with air mass trajectory analysis, indicates a potential spatial transport process and routes of atmospheric transport from urban cities to background locations. Thus, this work is of importance in evaluating atmospheric conditions in northwest China and northeast Tibetan Plateau regions, to discover the transport processes and facilitate improvements in climatic patterns concerning atmospheric impurities.
اظهر المزيد [+] اقل [-]pH-dependent sorption of sulfonamide antibiotics onto biochars: Sorption mechanisms and modeling
2019
Chen, Zaiming | Xiao Xin, | Xing, Baoshan | Chen, Baoliang
It remains a challenge to precisely predict and control environmental behaviors of ionizable organic contaminants (IOCs) due to their species change relative to pH and because of the lack of appropriate models to illustrate the underlying pH-dependent mechanisms. We studied the pH-dependent sorption behavior of five sulfonamide antibiotics (SAs) as typical IOCs with different pKₐ values towards a series of biochars as representative sorbents with well-characterized surface structures. After subtracting the contribution of the speciation effect using a classical speciation model, up to three unexpected enhanced sorption peaks could be found and regulated by the pKₐ,SA of the SAs and the pKₐ, BC of the biochars. The mono H-bond formation between the two pKₐ,SA of the SAs (pKₐ,SA₁ is from NH₂, pKₐ,SA₂ is from SO₂NH), and the biochar surface functional groups with comparable pKₐ values generated two peaks. Another peak around the middle between pKₐ,SA₁ and pKₐ,SA₂ appeared due to the aromatic π bonding-enhanced dual H-bond. All of these peaks were quantitatively separated by a novel two-compartment model, which was developed by capturing the characteristics of pH-dependent sorption. The quantified hydrogen bonding among different SAs elucidates the effectiveness and limits of the pKₐ equalization principle to predict the strengthening of hydrogen bonding at the solid-aqueous interface. This work recognizes the quantitative relationship among the structure, sorption, and H-bond interaction of biochars and guides the prediction of the fate of IOCs in the environment and the development of remediation options.
اظهر المزيد [+] اقل [-]Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5
2019
Xu, Yanyi | Wang, Wanjun | Zhou, Ji | Chen, Minjie | Huang, Xingke | Zhu, Yaning | Xie, Xiaoyun | Li, Weihua | Zhang, Yuhao | Kan, Haidong | Ying, Zhekang
Chronic ambient fine particulate matter (PM₂.₅) exposure correlates with various adverse health outcomes. Its impact on the circulating metabolome−a comprehensive functional readout of the interaction between an organism's genome and environment−has not however been fully understood. This study thus performed metabolomics analyses using a chronic PM₂.₅ exposure mouse model. C57Bl/6J mice (female) were subjected to inhalational concentrated ambient PM₂.₅ (CAP) or filtered air (FA) exposure for 10 months. Their sera were then analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). These analyses identified 2570 metabolites in total, and 148 of them were significantly different between FA- and CAP-exposed mice. The orthogonal partial least-squares discriminant analysis (OPLS-DA) and heatmap analyses displayed evident clustering of FA- and CAP-exposed samples. Pathway analyses identified 6 perturbed metabolic pathways related to amino acid metabolism. In contrast, biological characterization revealed that 71 differential metabolites were related to lipid metabolism. Furthermore, our results showed that CAP exposure increased stress hormone metabolites, 18-oxocortisol and 5a-tetrahydrocortisol, and altered the levels of circadian rhythm biomarkers including melatonin, retinal and 5-methoxytryptophol.
اظهر المزيد [+] اقل [-]Solid fuel combustion as a major contributor of polycyclic aromatic hydrocarbons in rural China: Evidence from emission inventory and congener profiles in tree bark
2019
Niu, Lili | Zhou, Yuting | Xu, Chao | Zhang, Chunlong | Zhou, Jinghua | Zhang, Xichang | Liu, Weiping
Polycyclic aromatic hydrocarbons (PAHs) remain a focal concern of the air pollution in China. To discriminate the sources of airborne PAHs in Chinese rural regions, a national-scale tree bark sampling campaign and emission inventory estimation were conducted. The concentrations of the sum of 16 U.S. EPA priority PAHs in rural bark ranged from 6.30 to 3803 ng/g, with the dominance of 3- and 4-ring PAHs. Bark residual PAH concentration correlated significantly with emission flux rate, bark lipid content, ambient PM₂.₅, precipitation and sampling location. Based on the information of emission data, bark PAH congener profiles, principal component analysis, diagnostic ratios and compound-specific isotope analysis, solid fuel combustion was identified as the major source and could explain 40.3%–46.4% of bark PAH residues in rural China. The δ¹³C values of most individual PAHs were more negative at sites with lower longitude and latitude, suggesting a greater contribution of biomass combustion to PAH residues. Our results suggest the importance of regulating solid fuel combustion to significantly improve the air quality in China, and bark samples can provide a wealth of information on effectively monitoring and controlling the sources of PAH emission in rural China.
اظهر المزيد [+] اقل [-]