خيارات البحث
النتائج 261 - 270 من 6,560
Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium النص الكامل
2020
Zhou, Chuanqi | Huang, Jung-Chen | Zheng, Lixin | He, Shengbing | Zhou, Weili
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9–74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3–100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40–87.24 μg Cr/g DW) or adults (19.41–50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7–94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1–1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
اظهر المزيد [+] اقل [-]Characterization of PCN emission and removal from secondary copper metallurgical processes النص الكامل
2020
Dat, Nguyen Duy | Huang, Yong Ji | Chang, Moo Been
This study investigates the characteristics of PCN emission and removal from two secondary copper metallurgical processes (plants A and B) equipped with different air pollution control devices (APCDs). Different operating conditions and feeding materials result in varying emission factors of PCNs from two plants. The average PCN concentration emitted from plant B (7597 ng Nm⁻³) is significantly higher than that emitted from plant A (32.5 ng Nm⁻³) and those reported in China (5.8–2845 ng Nm⁻³). Similar trend is found for fly ash samples collected from two plants. Low chlorinated homologues (Mono-to Tri-CNs) are the major contributors to total PCNs measured in flue gas, fly ash and slag samples. Combination of semi-dry absorber, activated carbon injection and baghouse is effective for PCN removal in plant A, with the overall removal efficiency of 98%. The overall removal efficiency of PCNs achieved with APCDs equipped in plant B is 90%, however, increases of some homologues as the flue gases passing through baghouse and wet scrubber are found, suggesting the occurrence of memory effect within baghouse and wet scrubber.
اظهر المزيد [+] اقل [-]Microplastics in brown trout (Salmo trutta Linnaeus, 1758) from an Irish riverine system النص الكامل
2020
O’Connor, James D. | Murphy, Sinéad | Lally, Heather T. | O’Connor, Ian | Nash, Róisín | O’Sullivan, John | Bruen, Michael | Heerey, Linda | Koelmans, Albert A. | Cullagh, Alan | Cullagh, Declan | Mahon, Anne Marie
Rivers play an important role in the overall transport of microplastic pollution (1 μm to 5 mm), with fluvial dynamics expected to influence biotic interactions, particularly for fish. So far, there have been few assessments of microplastics in freshwater salmonids. The prevalence (i.e. percentage occurrence) and burden (i.e. abundance per fish) of microplastics were assessed in the gastrointestinal tracts (GITs) and stomach contents (SCs) of 58 brown trout Salmo trutta Linnaeus, 1758 sampled at six sites along the River Slaney catchment in south-east Ireland. Sites were divided into two classifications (high and low exposure) based on proximity to microplastic pollution sources, comprising three sites each. Analysis of biological traits (e.g. fish length) and diet was performed on the same fish to determine possible factors explaining microplastic burden. Microplastics were found in 72% of fish having been recovered from 66% of GITs (1.88 ± 1.53 MPs fish⁻¹) and 28% of SCs (1.31 ± 0.48 MPs fish⁻¹). Fibres were the dominant particle type recovered from GITs (67%) and SCs (57%) followed by fragments. No difference in median microplastic burden was observed between fish collected in high and low exposure sites. Microplastic burden was unrelated to fish fork length, while microplastic size distribution (100 ≤ 350 μm, 350 μm to ≤ 5 mm) was unrelated to S. trutta age class estimates. Furthermore, microplastic burden was not explained by dietary intake. Though further research is necessary, this study showed the presence of microplastics in wild S. trutta collected from an Irish riverine system, which could have further implications for top-level consumers that feed on the species, including humans. Further analysis is required to determine possible trophic linkages for the species, with respect to microplastics, and to assess the suitability of S. trutta for monitoring microplastics in river systems.
اظهر المزيد [+] اقل [-]Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types النص الكامل
2020
Hossain, Mobarok | Patra, Pulak Kumar
High concentration of fluoride (up to 20.9 mg/L) in groundwater with significant variation (p = 5.9E-128) among samples was reported from Birbhum district, an acknowledged fluoride endemic region in India. The groundwater samples (N = 368) were grouped based on their hydrochemical properties and aquifer geology for hydro-geochemical characterization. Friedman’s test showed p < 0.0001 confidence level which indicates that fluoride concentration among geological groups and water groups are independent. Bland-Altman plot was used to study the inter-relationships among the groups through bias value (∂) and limit of agreement (LoA). Among the geological groups, laterites and granite-gneiss groups exhibited statistically significantly difference in fluoride geochemistry; whereas the younger and older alluvium groups displayed similar characteristics. The fluoride concentration was found to be in the order Lateritic > Granite-gneiss > Older alluvium ≥ Younger alluvium. Dissolution of minerals (such as fluorite, biotite) in laterite sheeted basalt, and granite-gneiss is the main source of groundwater fluoride in the region. Fluoride concentration is also influenced by depth of water table. Hydrochemical study indicated that fluoride concentration was higher in Na–HCO₃ than in Ca–SO₄ and Ca–HCO₃ type of groundwater. The fluoride concentration were positively correlated with Na⁺ and pH and negatively correlated with the Ca²⁺ and Mg²⁺ signifying linkage with halite dissolution and calcite, dolomite precipitation. Geostatistical mapping of WQI through empirical bayesian kriging (EBK) with respect to regional optimal guideline value (0.73 mg/L) classified that groundwater in some parts of the district are unfit for drinking purpose. Health survey (N = 1767) based on Dean’s criteria for dental fluorosis indicated presence of slight to moderate dental hazard. Besides, providing baseline data for management of groundwater quality in the study area, the study demonstrated the applicability of Bland-Altman analysis and empirical bayesian kriging (EBK) in delineation and interpolation of fluoride contaminated region.
اظهر المزيد [+] اقل [-]Trace elements in shellfish from Shenzhen, China: Implication of coastal water pollution and human exposure النص الكامل
2020
Liu, Shan | Liu, Yanling | Yang, Dongfeng | Li, Chun | Zhao, Yang | Ma, Huimin | Luo, Xianru | Lu, Shaoyou
Shellfish constitute an important component of human diet, especially for those living in coastal regions. Shellfish have attracted extensive attention due to high enrichment of heavy metals. The aims of this study were to investigate the levels of trace elements in shellfish from coastal waters of Shenzhen, China and to assess human intake risks. Nine elements, including chromium (Cr), copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), selenium (Se), cadmium (Cd), arsenic (As) and lead (Pb) were measured in 216 shellfish samples from eight species. Their concentrations (based on wet weight) were: Cr (0.28–21.4 mg kg⁻¹), Cu (1.40–158 mg kg⁻¹), Fe (16.5–5387 mg kg⁻¹), Zn (11.1–847 mg kg⁻¹), Mn (1.33–422 mg kg⁻¹), Se (0.15–11.8 mg kg⁻¹), Cd (0.02–18.4 mg kg⁻¹), Pb (<LOQ-10.9 mg kg⁻¹) and As (2.24–95.5 mg kg⁻¹), relatively greater than those reported in shellfish from other locations of China. Crassostrea ariakensis and Babylonia areolata were found to enrich As and Cd, respectively. The target hazard quotient (THQ) values of Cd and As were more than 1, suggesting considerable health risks from the consumption of shellfish of this zone. To our knowledge, this is the first study to assess the human risk exposure to trace elements via shellfish consumption in South China.
اظهر المزيد [+] اقل [-]Cadmium hyperaccumulation as an inexpensive metal armor against disease in Crofton weed النص الكامل
2020
Dai, Zhi-Cong | Cai, Hong-Hong | Qi, Shan-Shan | Li, Jian | Zhai, De-Li | Wan, Justin Siu Hung | Du, Dao-Lin
Invasive plants readily invade metal-contaminated areas. The hyperaccumulation of toxic heavy metals is not an uncommon feature among plant species. Although several hypotheses were proposed to explain this phenomenon, it is currently unclear how hyperaccumulation may benefit plants. The invasive Crofton weed (Ageratina adenophora) is a known hyperaccumulator of chromium and lead. We previously found that the species can also hyperaccumulate cadmium. The role of phytoaccumulation in defense to pathogen attack is unclear. We inoculated A. adenophora plants with a common generalist pathogen (Rhizoctonia solani) to test its resistance under cadmium treatment. We found evidence that cadmium hyperaccumulation reduced pathogen infection in A. adenophora. Our findings indicate elemental defense is highly cost efficient for hyperaccumulators inhabiting metal-contaminated sites, where plants were only modestly affected by cadmium. The reduction in pathogen damage conferred by cadmium was relatively high, particularly under lower cadmium levels. However, the benefits at higher levels may be capped. Elemental defense may be a key mechanism for plant invasion into polluted sites, especially in regions with widespread industrial activity. Our study highlights the importance of testing different metal concentrations when testing plant resistance and the importance of considering enemy attack when selecting plants for phytoremediation.
اظهر المزيد [+] اقل [-]The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles النص الكامل
2020
Swart, Elmer | Goodall, Tim | Kille, Peter | Spurgeon, David J. | Svendsen, Claus
Environmental pollution can disrupt the interactions between animals and their symbiotic bacteria, which can lead to adverse effects on the host even in the absence of direct chemical toxicity. It is therefore crucial to understand how environmental pollutants affect animal microbiomes, especially for those chemicals that are designed to target microbes. Here, we study the effects of two biocidal nanoparticles (NPs) (Ag and CuO) on the soil bacterial community and the resident gut microbiome of the earthworm Eisenia fetida over a 28-day period using metabarcoding techniques. Exposures to NPs were conducted following OECD test guidelines and effects on earthworm reproduction and juvenile biomass were additionally recorded in order to compare effects on the host to effects on microbiomes. By employing a full concentration series, we were able to link pollutants to microbiome effects in high resolution. Multivariate analysis, differential abundance analysis and species sensitivity distribution analysis showed that Ag-NPs are more toxic to soil bacteria than CuO-NPs. In contrast to the strong effects of CuO-NPs and Ag-NPs on the soil bacterial community, the earthworm gut microbiome is largely resilient to exposure to biocidal NPs. Despite this buffering effect, CuO-NPs did negatively affect the relative abundance of some earthworm symbionts, including ‘Candidatus Lumbricincola’. Changes in the soil bacterial community and the earthworm microbiome occur at total copper concentrations often found or modelled to occur in agricultural fields, demonstrating that soil bacterial communities and individual taxa in the earthworm microbiome may be at risk from environmental copper exposure including in nanomaterial form.
اظهر المزيد [+] اقل [-]Autophagy mediates perfluorooctanoic acid-induced lipid metabolism disorder and NLRP3 inflammasome activation in hepatocytes النص الكامل
2020
Weng, Zhenkun | Xu, Cheng | Zhang, Xin | Pang, Lu | Xu, Jin | Liu, Qian | Zhang, Liye | Xu, Shuqin | Gu, Aihua
Perfluorooctanoic acid (PFOA) has applications in numerous industrial products and is an industrial waste that is persistently present in the environment. Exposure to PFOA results in nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain unclear. In this study, male C57BL/6 mice were exposed to PFOA (1 mg/kg/day) for 4 weeks to evaluate the effect of PFOA, and the human liver cell line (L-02) was used to observe the direct effect of PFOA in vitro. After PFOA exposure, the expression of genes related to hepatic lipogenesis, the NLRP3 inflammasome, and autophagy were measured. We found that exposure to PFOA induced lipid accumulation and stimulated lipogenesis in both mouse livers and L-02 cells. In addition, increased NLRP3 aggregation and enhanced production of IL-1β occurred after PFOA treatment. We also found that PFOA exposure induced autophagosome formation and p62 accumulation, indicating blockage of autophagic flux. Rapamycin alleviated PFOA-induced lipid accumulation and NLRP3 inflammasome activation by activating autophagic flux. Conversely, chloroquine, an autophagic flux inhibitor, exacerbated PFOA-induced lipid accumulation and NLRP3 inflammasome activation. Collectively, these results provide evidence to show that PFOA-induced blockade of autophagic flux causes an increase in lipid synthesis and inflammation in vivo and in vitro.
اظهر المزيد [+] اقل [-]Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants النص الكامل
2020
Zhang, Wenhui | Jia, Xiaorong | Chen, Si | Wang, Jing | Ji, Rong | Zhao, Lijuan
With the intended application of engineered nanomaterials (ENMs) in agriculture, accurate assessment the effect of these ENMs on soil microbial communities is especially necessary. Here, maize plants were cultivated in soil amended by SiO₂, TiO₂, and Fe₃O₄ ENMs (100 mg kg⁻¹ soil) for four weeks. The impact of ENMs on bacterial community structure of the rhizosphere soil was investigated by using high-throughput sequencing. In addition, metabolites of maize rhizosphere soil were quantified by gas chromatography-mass spectrometry (GC-MS) based metabolomics. We found that the disturbance of ENMs on soil microbes are in the follow of Fe₃O₄>TiO₂>SiO₂. Exposure of Fe₃O₄ ENMs significantly reduced the abundance of nitrogen-fixation related bacteria Bradyrhizobiaceae (from 2.94% to 2.40%) and iron-redox bacteria Sediminibacterium (from 2.15% to 2.07%). Additionally, Fe₃O₄ ENMs significantly increased populations of Nocardioides (from 1.63% to 1.77%), Chitinophaga sancti (from 1.12% to 2.08%), Pantoea (from 1.31% to 2.22%), Rhizobiumand (from 1.41% to 1.74%) and Burkholderia-Paraburkholderia (from 1.50% to 2.09%), which are associated with carbon cycling and plant growth promoting. This study provides a perspective on the response of rhizosphere microbial community and low molecular weight metabolites to ENMs exposure, providing a comprehensive understanding of the environmental risk of ENMs.
اظهر المزيد [+] اقل [-]Selenium sources differ in their potential to alleviate the cadmium-induced testicular dysfunction النص الكامل
2020
Zhang, Cong | Huang, Yan | Talukder, Milton | Ge, Jing | Lv, Mei-Wei | Bi, Shao-Shuai | Li, Jin-Long
Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group: basal diet; (Ⅱ) Cd group: basal diet with 140 mg/kg CdCl₂; (Ⅲ) YSe + Cd group: basal diet with 140 mg/kg CdCl₂ and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group: basal diet with 140 mg/kg CdCl₂ and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group: basal diet with 140 mg/kg CdCl₂ and 3 mg/kg Na₂SeO₃. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.
اظهر المزيد [+] اقل [-]