خيارات البحث
النتائج 2631 - 2640 من 4,938
Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(VI) and Cu(II) removal from aqueous solution through a permeable reactive column النص الكامل
2019
Qu, Guangzhou | Zeng, Danyang | Chu, Rongjie | Wang, Tiecheng | Liang, Dongli | Qiang, Hong
Magnetic Fe₃O₄ assembled on nanoscale zero-valent iron (nZVI) supported on an activated carbon fiber (ACF) to form nanoscale magnetic composites (nZVI-Fe₃O₄/ACF) for removing Cr(VI) and Cu(II) from aqueous solution through a permeable reactive column was synthesized via an in situ reduction method. The nZVI-Fe₃O₄/ACF composites and the interaction between nZVI-Fe₃O₄/ACF and both Cr and Cu ions were characterized by field emission scanning electron microscopy (FESEM) with EDX, TEM, XRD, and XPS. Batch experiments were used to analyze the effects of main factors on Cr(VI) removal and investigate the simultaneous removal of Cr(VI) and Cu(II) through a permeable reactive column. The results indicated that the ACF and Fe₃O₄ can inhibit the agglomeration and enhance the dispersibility of nZVI, and Fe₃O₄ and nZVI displayed good synergetic effects. The removal efficiency of Cr(VI) improved with the increase amount of Fe₃O₄ in the nZVI-Fe₃O₄/ACF composites. With low initial concentration of Cr(VI) and acidic conditions, ~ 90% of 20.0 mg·L⁻¹ Cr(VI) in the solution was removed after 60 min. The removal of Cr(VI) was also affected by coexisting ions. The removal efficiency of 10.0 mg·L⁻¹ Cu(II) was ~ 100% after 45 min of reaction, and the presence of Cu(II) can accelerate the reduction of Cr(VI). The simultaneous removal mechanisms of Cr(VI) and Cu(II) by the nZVI-Fe₃O₄/ACF composites also were proposed.
اظهر المزيد [+] اقل [-]The Variable Fate of Ag and TiO2 Nanoparticles in Natural Soil Solutions—Sorption of Organic Matter and Nanoparticle Stability النص الكامل
2019
Degenkolb, Laura | Kaupenjohann, Martin | Klitzke, Sondra
Engineered nanoparticles (NP) like Ag and TiO₂ offer unique properties for various applications. Thus, the entry of the NP in soil environments is expected to increase in the future due to their growing industrial use. To avoid potential hazards due to these anthropogenic products, NP behavior in the environment should be well understood. In natural soil solutions, we investigated NOM adsorption onto Ag and TiO₂ NP and its influence on NP colloidal stability. Therefore, we extracted soil solutions from a floodplain soil (Fluvisol) and a farmland soil (Cambisol) differing in NOM quality and inorganic ion concentration. We measured the amount of adsorbed organic carbon as well as changes in aromaticity and molecular weight of NOM upon adsorption onto NP. Additionally, the size and zeta potential of NP in both soil solutions were investigated. We observed that the highly hydrophilic NOM of floodplain soil solution rich in inorganic ions strongly adsorbed to Ag but not to TiO₂ NP. Instead, sorption to TiO₂ NP was observed for the more hydrophobic NOM of the farmland soil with low ionic strength which did not sorb to Ag NP. These differences had a strong effect on NP stability, leading to Ag NP destabilization in case of floodplain soil solution and TiO₂ NP stabilization in the presence of farmland soil solution. Our results point out the necessity of studies in more complex systems and suppose that oxic and metallic NP might show very different fate depending on the environment they are exposed to.
اظهر المزيد [+] اقل [-]Soil Nitrogen and Mercury Dynamics Seven Decades After a Fire Disturbance: a Case Study at Acadia National Park النص الكامل
2019
Patel, Kaizad F. | Jakubowski, Michael D. | Fernandez, Ivan J. | Nelson, Sarah J. | Gawley, William
Forest soils (mainly soil organic carbon) play an important role in the retention of nitrogen and mercury, and loss of the forest floor during wildfires can stimulate N and Hg losses. In this paper, we investigate long-term impacts of forest fire on soil N and Hg concentrations at Acadia National Park (ANP) in Maine. Acadia National Park experienced a severe fire in 1947. Within the national park, Hadlock Brook watershed was left unburned, whereas most of Cadillac Brook watershed was intensely burned, with substantial loss of the forest floor. Post-fire regeneration in Cadillac was mostly as hardwood species, whereas vegetation in Hadlock remained predominantly softwood. We sampled soils in both watersheds in 2015, approximately 70 years after the fire. The soils were analyzed for total carbon (TC), total nitrogen (TN), total mercury (THg), and methylmercury (MeHg) content. Compared to Hadlock, Cadillac soils had ~ 50% lower TC, ~ 40% lower TN, and ~ 50% lower THg content, reflecting the loss of forest floor 70 years ago. Methylmercury concentrations in Cadillac were approximately 2 times the concentrations in Hadlock, indicating that conditions were more conducive to methylation, potentially due to differences in forest type. Long-term comparisons of stream DOC, NO₃⁻, and THg concentrations between the two watersheds demonstrated that concentrations were significantly lower in Cadillac Brook, reflecting greater retention in Cadillac and a legacy of lower atmospheric deposition in the hardwood as compared to softwood watershed. This study provides insights on the multi-decadal recovery from a stand-replacing disturbance and underscores the persistence of altered soil biogeochemistry.
اظهر المزيد [+] اقل [-]Evaluation of the Cr(VI) Adsorption Performance of Xanthate Polysaccharides Supported onto Agave Fiber-LDPE Foamed Composites النص الكامل
2019
Moreno-López, Arturo Y. | González-López, Martín E. | Manríquez-González, Ricardo | González-Cruz, Ricardo | Pérez-Fonseca, Aida A. | Gómez, César | Flores-Cano, José V. | Robledo-Ortíz, Jorge R.
In this work, hexavalent chromium adsorption onto LDPE and agave fiber composites coated with chitosan or cellulose was studied in batch experiments. Chemical modifications consisting in cross-linked chitosan, cross-linked chitosan xanthate, and cellulose xanthate were applied to the polysaccharide-coated sorbents in order to increase their stability and adsorption capacity. The sorbents were characterized in terms of morphology by scanning electron microscopy and their chemical composition was evaluated by infrared and nuclear magnetic resonance spectroscopies. The results showed that the adsorption kinetics followed the pseudo-second-order model in all cases (i.e., chemisorption as the rate-limiting step of the adsorption reaction). Moreover, the isotherms evidenced a monolayer adsorption on homogeneous sites described by the Langmuir model. The maximum adsorption capacity of 284.7 mg Cr(VI)/g was obtained for the cross-linked chitosan xanthate sorbent at pH 4 which represents an increase of 43% against the chitosan-coated sorbent (199.1 mg Cr(VI)/g). Besides, functionalized cellulose sorbent also increased its capacity from 84.5 to 106.0 mg Cr(VI)/g cellulose due to the xanthate group. Up to six adsorption-desorption cycles were completed for the case of functionalized chitosan sorbent, confirming that the stability was increased with the cross-linking and the material could be reused several times without losing its adsorption capacity. In the case of cellulose xanthate, only three adsorption cycles were completed. However, improvements were observed in the desorption capacity considering that it decreased below 20% after two cycles in the cellulose-coated sorbent.
اظهر المزيد [+] اقل [-]Genetic and systemic toxicity induced by silver and copper oxide nanoparticles, and their mixture in Clarias gariepinus (Burchell, 1822) النص الكامل
2019
Ogunsuyi, Olusegun I. | Fadoju, Opeoluwa M. | Akanni, Olubukola O. | Alabi, Okunola A. | Alimba, Chibuisi G. | Cambier, Sébastien | Eswara, Santhana | Gutleb, Arno C. | Adaramoye, Oluwatosin A. | Bakare, Adekunle A.
Unanticipated increase in the use of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) due to their antimicrobial properties is eliciting environmental health concern because of their coexistence in the aquatic environment. Therefore, we investigated the genetic and systemic toxicity of the individual NPs and their mixture (1:1) using the piscine micronucleus (MN) assay, haematological, histopathological (skin, gills and liver) and hepatic oxidative stress analyses [malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT)] in the African mud catfish, Clarias gariepinus. The fish were exposed to sublethal concentrations (6.25–100.00 mg/L) of each NP and their mixture for 28 days. Both NPs and their mixture induced significant (p < 0.05) increase in MN frequency and other nuclear abnormalities. There was significant decrease in haemoglobin concentration, red and white blood cell counts. Histopathological lesions observed include epidermal skin cells and gill lamellae hyperplasia and necrosis of hepatocytes. The levels of MDA, GSH and activities of SOD and CAT were impacted in C. gariepinus liver following the exposure to the NPs and their mixture. Interaction factor analysis of data indicates antagonistic genotoxicity and oxidative damage of the NPs mixture. These results suggest cytogenotoxic effects of Ag NPs, CuO NPs and their mixture via oxidative stress in Clarias gariepinus.
اظهر المزيد [+] اقل [-]Electrobioremediation of Oxyfluorfen-Polluted Soil by Means of a Fixed-Bed Permeable Biological Barrier النص الكامل
2019
Barba, Silvia | Ocaña, Helena | Villaseñor, José | Rodrigo, Manuel A. | Cañizares, Pablo
This work studies the in situ electrobioremediation of an oxyfluorfen-polluted clay soil in a two-stage method. First, a fixed-bed biofilm reactor for oxyfluorfen biodegradation in wastewater was developed; it treated wastewater with 200 mg L⁻¹ of oxyfluorfen and reached 100% of oxyfluorfen degradation in 30 h. Second, a portion of the biofilm-covered bed was included into the polluted soil and it was used as a biological permeable reactive barrier (BioPRB), whereas electrokinetics was applied to promote the contact between the pollutant and microorganisms into the soil. The electrobioremediation study was performed in a bench scale setup under 1.0 V cm⁻¹ at room temperature and under periodic polarity reversal (2 day⁻¹) in a 2-week batch experiment. Two reference tests were done: (i) a conventional in situ biological test without electrokinetics and (ii) a conventional in situ electrokinetic test without using microorganisms. The experimental conditions (temperature, pH, moisture) were correctly controlled in the soil and enabled the microbial activity during the process. A low oxyfluorfen removal efficiency was obtained after 2 weeks (11%) because of the low electrokinetic mobility of such non-polar pollutant into the soil. Despite this low efficiency value, it was considered that the combined biological-electrokinetic technology could be used as a bioaugmentation procedure to perform electrobioremediation processes because the results of both reference tests showed negligible removal efficiencies when using only biological or only electrochemical methods. According to these results, electrobioremediation could be considered a feasible technology although more retention time would be required to achieve successful remediation results.
اظهر المزيد [+] اقل [-]Influence of Heavy Metals on Seed Germination and Seedling Growth of Wheat, Pea, and Tomato النص الكامل
2019
Baruah, Nijara | Mondal, Subham C. | Fārūq, Muḥammad | Gogoi, Nirmali
Experiments were conducted under lead (Pb), cadmium (Cd), and copper (Cu) exposure to observe germination and seedling growth of wheat (Triticum aestivum L), pea (Pisum sativum), and tomato (Solanum lycopersicum L.). Metals were applied in five concentrations (20, 65, 110, 175, and 220 ppm) and Hoagland solution was used to feed the seedlings. Irrespective of the tested crop seeds, copper revealed maximum effect (51.2%) on germination followed by lead (47.5%) and cadmium (35.3%). Tomato seeds were most sensitive in germination stage followed by pea and wheat. In seedling stage, tomato also showed highest sensitivity to both Cd and Cu. However, pea seedlings showed higher tolerance to Pb and wheat seedlings had the highest tolerance to both Cu and Cd. Toxicity and tolerance of metals was found to vary with crops and growth stages. Higher transfer of metals (Pb, Cd, and Cu) in wheat seedling indicates higher risk of food chain contamination when grown in polluted soil. Higher mobility and uptake of Cd in tomato and wheat seedlings even under lower concentration of exposure needs further study.
اظهر المزيد [+] اقل [-]The potential impact of unsaturation degree of the biodiesels obtained from beverage and food processing biomass streams on the performance, combustion and emission characteristics in a single-cylinder CI engine النص الكامل
2019
Chelladorai, Prabhu | Varuvel, Edwin Geo | Martin, Leenus Jesu | Nagalingam, Bedhannan
The purpose of this study is to experimentally investigate the effect of unsaturation of the biodiesels obtained from grapeseed oil, wheat germ oil and coconut oil (reference fuel) for compression ignition (CI) engine application. Fatty acid profile analysis and physio-chemical properties were determined by standard test procedures. Engine testing was carried out in a 5.2-kW single-cylinder CI engine and the combustion, performance and emission characteristics were analysed. The effect of fuel property variation and the combustion reaction kinetics due to unsaturation difference have been discussed. The maximum brake thermal efficiency at full load for diesel was found to be 32.3% followed by 31.3%, 30.2% and 27.4 %, respectively, for coconut biodiesel (CBD), grapeseed biodiesel (GSBD) and wheat germ biodiesel (WGBD). Maximum heat release rate as observed for diesel, CBD, GSBD and WGBD are 63.2 J/°CA 60.7 J/°CA and 59 J/°CA and 43.4 J/°CA respectively. The brake-specific NO emission at full load is higher for CBD followed by GSBD, WGBD and diesel having values of 9.23 g/kWh, 8.91 g/kWh, 8.21 g/kWh and 7.6 g/kWh respectively. Conversely, the smoke emission is lower for CBD compared to the other tested fuels.
اظهر المزيد [+] اقل [-]Past and emerging topics related to electronic waste management: top countries, trends, and perspectives النص الكامل
2019
Andrade, Daniel Fernandes | Romanelli, João Paulo | Pereira-Filho, Edenir Rodrigues
A bibliometric analysis was performed to assess historical and recent research trends regarding e-waste studies from 1998 to 2018. Documents related to e-waste were identified from the Clarivate Analytics Web of Science© (WoS) database, and a total of 3311 academic articles was retrieved. The analysis was performed from four main aspects: (1) publication activity by year, by WoS category, and by geographic distribution; (2) journals; (3) most-cited papers; and (4) top 10 countries and author keyword analysis. The number of publications concerning e-waste issues has increased substantially over the last 20 years, especially in the environmental science category, and more than a third of the publications were produced in China (1181 records). Waste Management and Environmental Science & Technology were the most sought-after journals for disseminating the results. Studies related to “e-waste flow analysis,” “recycling,” “recovery of precious metals,” and “risk assessment of recycling areas” have been the most common for several years. The analysis of keywords suggested that there are many topics on electronic waste and that each country has presented a different focus of research. Overall, the bibliometric analysis proved to be an efficient tool with which to monitor historical and current research trends and to evaluate the sheer volume of currently existing scientific literature on e-waste topics.
اظهر المزيد [+] اقل [-]Chemical and microbiological responses of heavy metal contaminated sediment subject to washing using humic substances النص الكامل
2019
Wen, Jia | Xing, Lang | Wang, Yongxu | Zeng, Guangming
Washing of contaminated soils or sediments using humic substances (HS) extracted either from source-rich materials or compost has been tested effective to remove various heavy metals. Nevertheless, the remaining chemical fractionation of metals and post-washing biological responses were not discussed in previous research. In this study, we used a HS extracted from green waste compost to wash off Cd, As, and Ni from a contaminated sediment, and evaluated the washing effect on sediment microbes by measuring a series of indexes with regard to microbial biomass and enzyme activities. Results showed that HS washing was more effective in removing the cationic metals Cd and Ni than the anionic metal As. The highest HS dose of 2000 mg L⁻¹ resulted in 24.5-, 33.1-, and 12-fold increases of removal for Cd, Ni, and As, respectively. The remaining Cd and As were found to migrate to less stable fractions, whereas the remaining Ni was dominantly found in the residual fraction. Increases of metal removal efficiency, microbial biomass, and dehydrogenase activity were found to correlate with the increase of HS concentrations. Increasing doses of HS slightly altered sediment pH to the lower range but did not cause any significant effect on microbial activities. The study proves that HS washing is indeed a more environmental-friendly strategy than many existing washing agents which have exerted various side effects on soil properties.
اظهر المزيد [+] اقل [-]