خيارات البحث
النتائج 2661 - 2670 من 3,208
Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants النص الكامل
2015
Mininni, G. | Laera, G. | Bertanza, G. | Canato, M. | Sbrilli, A.
This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14–49 g SS/(PE × day) in the upgraded ones, with reduction up to 79 % when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of −11 % and +28 % of the reference scenarios.
اظهر المزيد [+] اقل [-]The effect of urban heat island on Izmir’s city ecosystem and climate النص الكامل
2015
Corumluoglu, Ozsen | Asri, Ibrahim
Depending on the researches done on urban landscapes, it is found that the heat island intensity caused by the activities in any city has some impact on the ecosystem of the region and on the regional climate. Urban areas located in arid and semiarid lands somehow represent heat increase when it is compared with the heat in the surrounding rural areas. Thus, cities located amid forested and temperate climate regions show moderate temperatures. The impervious surfaces let the rainfall leave the city lands faster than undeveloped areas. This effect reduces water’s cooling effects on these lands. More significantly, if trees and other vegetations are rare in any region, it means less evapotranspiration—the process by which trees “exhale” water. Trees also contribute to the cooling of urban lands by their shade. Land cover and land use maps can easily be produced by processing of remote sensing satellites’ images, like processing of Landsat’s images. As a result of this process, urban regions can be distinguished from vegetation. Analyzed GIS data produced and supported by these images can be utilized to determine the impact of urban land on energy, water, and carbon balances at the Earth’s surface. Here in this study, it is found that remote sensing technique with thermal images is a liable technique to asses where urban heat islands and hot spots are located in cities. As an application area, in Izmir, it was found that the whole city was in high level of surface temperature as it was over 28 °C during the summer times. Beside this, the highest temperature values which go up to 47 °C are obtained at industrial regions especially where the iron-steel factories and the related industrial activities are.
اظهر المزيد [+] اقل [-]Photolysis degradation of polyaromatic hydrocarbons (PAHs) on surface sandy soil النص الكامل
2015
EL-Saeid, Mohamed H. | Al-Turki, Ali M. | Nadeem, Mahmoud E. A. | Hassanin, Ashraf S. | Al-Wabel, Mohamed I.
Polycyclic aromatic hydrocarbons (PAHs) are potent environmental pollutants, and some of them have been identified as carcinogenic and mutagenic. To advance the knowledge of the environmental fate of PAHs, we systematically investigated the influence of different UV wavelengths irradiation on photolysis of PAHs on sandy soil under tow wavelengths (254 and 306 nm) UV irradiation for six PAHs. In addition, kinetic model and influence of several parameters on PAHs photolysis have been studied. The results obtained indicated that UV radiation with a wavelength of 306 nm was more efficient in the photolysis of the polycyclic aromatic hydrocarbons. Our results showed that fluoranthene (Flt) was the fastest in decomposition, has the greatest value for the coefficient of photolysis (7.4 × 10⁻³ h⁻¹), and has less half-life, reaching 94 h when using a wavelength of 254 nm. The results indicated that the pyrene (Pyr) was more resistant to photolysis in comparison with indeno(1,2,3-cd) pyrene (IP) and fluoranthene (Flt). The results indicate that photolysis is a successful way to remediate the six studied PAHs compounds.
اظهر المزيد [+] اقل [-]Evolution of the MIDTAL microarray: the adaption and testing of oligonucleotide 18S and 28S rDNA probes and evaluation of subsequent microarray generations with Prymnesium spp. cultures and field samples النص الكامل
2015
McCoy, Gary R. | Touzet, Nicolas | Fleming, Gerard T. A. | Raine, R. (Robin)
The toxic microalgal species Prymnesium parvum and Prymnesium polylepis are responsible for numerous fish kills causing economic stress on the aquaculture industry and, through the consumption of contaminated shellfish, can potentially impact on human health. Monitoring of toxic phytoplankton is traditionally carried out by light microscopy. However, molecular methods of identification and quantification are becoming more common place. This study documents the optimisation of the novel Microarrays for the Detection of Toxic Algae (MIDTAL) microarray from its initial stages to the final commercial version now available from Microbia Environnement (France). Existing oligonucleotide probes used in whole-cell fluorescent in situ hybridisation (FISH) for Prymnesium species from higher group probes to species-level probes were adapted and tested on the first-generation microarray. The combination and interaction of numerous other probes specific for a whole range of phytoplankton taxa also spotted on the chip surface caused high cross reactivity, resulting in false-positive results on the microarray. The probe sequences were extended for the subsequent second-generation microarray, and further adaptations of the hybridisation protocol and incubation temperatures significantly reduced false-positive readings from the first to the second-generation chip, thereby increasing the specificity of the MIDTAL microarray. Additional refinement of the subsequent third-generation microarray protocols with the addition of a poly-T amino linker to the 5′ end of each probe further enhanced the microarray performance but also highlighted the importance of optimising RNA labelling efficiency when testing with natural seawater samples from Killary Harbour, Ireland.
اظهر المزيد [+] اقل [-]Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—potential for malaria vector control النص الكامل
2015
Arokiyaraj, Selvaraj | Dinesh Kumar, Vannam | Elakya, Vijay | Kamala, Tamilselvan | Park, Sung Kwon | Ragam, Muthiah | Saravanan, Muthupandian | Bououdina, Mohomad | Arasu, Mariadhas Valan | Kovendan, Kalimuthu | Vincent, Savariar
Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides synthesized of natural products for vector control have been a priority in this area. In the present study, silver nanoparticles (Ag NPs) were green-synthesized using a floral extract of Chrysanthemum indicum screened for larvicidal and pupicidal activity against the first to fourth instar larvae and pupae of the malaria vector Anopheles stephensi mosquitoes. The synthesized Ag NPs were characterized by using UV–vis absorption, X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The textures of the yielded Ag NPs were found to be spherical and polydispersed with a mean size in the range of 25–59 nm. Larvae and pupae were exposed to various concentrations of aqueous extract of C. indicum and synthesized Ag NPs for 24 h, and the maximum mortality was observed from the synthesized Ag NPs against the vector A. stephensi (LC₅₀ = 5.07, 10.35, 14.19, 22.81, and 35.05 ppm; LC₉₀ = 29.18, 47.15, 65.53, 87.96, and 115.05 ppm). These results suggest that the synthesized Ag NPs have the potential to be used as an ideal eco-friendly approach for the control of A. stephensi. Additionally, this study provides the larvicidal and pupicidal properties of green-synthesized Ag NPs with the floral extract of C. indicum against vector mosquito species from the geographical location of India.
اظهر المزيد [+] اقل [-]Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils النص الكامل
2015
Dai, Guofei | Zhong, Jiayou | Song, Lirong | Guo, Chunjing | Gan, Nanqin | Wu, Zhenbin
Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin–dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMₙ, PO₄-P, and NH₄-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.
اظهر المزيد [+] اقل [-]Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children النص الكامل
2015
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced by combustion of fossil fuel and other organic materials. Both experimental animal and human studies have reported the harmful impacts of PAH compounds on fetal growth and neurodevelopment, including verbal IQ of children. Here, we have assessed the association between cognitive function of children and prenatal PAH exposures. The study is part of an ongoing, longitudinal investigation of the health effects of prenatal exposure to air pollution on infants and children in Krakow, Poland. The subjects in this report included 170 children whose mothers were enrolled to the study in the first or second trimester of pregnancy whose cord blood were tested for PAH–DNA adducts and who were assessed at age 7 using the Wechsler Intelligence Scale for Children-Revised (WISC-R). The outcome of a priori interest was depressed verbal IQ index (DepVIQ), which is the difference between WISC-R performance and verbal IQ scores. Prenatal PAH exposure was measured by cord blood PAH–DNA adducts, an individual dosimeter, integrating exposure from various sources of exposure over the gestational period. The estimated effect of prenatal PAH exposure on cognitive function was adjusted in multivariable regression for a set of potential confounders (child’s gender, parity, maternal education, breastfeeding practice, environmental tobacco smoke (ETS), and postnatal PAH exposure). The prevalence of DepVIQ was significantly higher in children with detectable PAH–DNA adducts compared to those with undetectable adducts (13.7 vs. 4.4 %,). Binary multivariable regression documented that the relative risk of DepVIQ increased threefold with a ln-unit increase in cord blood adducts (relative risk (RR) = 3.0, 95 % confidence interval (CI) 1.3–6.8). Postnatal PAH exposure also increased the risk of DepVIQ (RR = 1.6, 95 % CI 1.1–2.5). Long-term exclusive breastfeeding (at least 6 months) showed a protective effect (RR = 0.3, 95 % CI 0.1–0.9). In conclusion, these results provide further evidence that PAHs are harmful to the developing fetal brain with effects extending through childhood, with implications for the academic success of the children.
اظهر المزيد [+] اقل [-]Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period النص الكامل
2015
PM₂.₅carbonaceous particles were measured at Gosan, South Korea during 29 March–11 April 2002 which includes a pollution period (30 March–01 April) when the highest concentrations of major anthropogenic species (nss-SO₄²⁻, NO₃⁻, and NH₄⁺) were observed and a strong Asian dust (AD) period (08–10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.
اظهر المزيد [+] اقل [-]Integrated ecological risk assessment of dioxin compounds النص الكامل
2015
(Mohammad Azizur),
Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.
اظهر المزيد [+] اقل [-]Analysis of phenolic compounds in the dissolved and suspended phases of Lake Balaton water by gas chromatography-tandem mass spectrometry النص الكامل
2015
As a novel approach to characterize the phenolic pollutants of Lake Balaton (Central Europe, western Hungary), 26 endocrine disrupting phenols (chlorophenols, nitrophenols, alkylphenols, triclosan, bisphenol-A) were quantified in dissolved and suspended particulate matter (SPM) phases, alike. Sample collection was performed in the western and eastern basins, at 20 sites in April and October 2014. Solid-phase and ultrasound-assisted extractions to withdraw target phenols from dissolved and suspended phases were employed. Compounds were derivatized with hexamethyldisilazane and trifluoroacetic acid for their quantification as trimethylsilyl derivatives by gas chromatography-tandem mass spectrometry. In Lake Balaton’s dissolved phase, 2-chlorophenol (103–164 ng/L), 4-chlorophenol (407–888 ng/L), 2,4-dichlorophenol (20.2–72.0 ng/L), 2,4,6-trichlorophenol (10.4–38.1 ng/L), 2-nitrophenol (31.0–66.5 ng/L), 4-nitrophenol (31.5–94.1 ng/L), and bisphenol-A (20.6–112 ng/L), while in its SPM, 4-chlorophenol (<LOQ-1274 μg/kg, dry matter), 4-nitrophenol (423–714 μg/kg), 4-nonylphenol isomers (1500–2910 μg/kg), and bisphenol-A (250–587 μg/kg) were determined. Since phenolics appear partially or exclusively in the SPM, the analysis of both phases proved to be of primary importance.
اظهر المزيد [+] اقل [-]