خيارات البحث
النتائج 271 - 280 من 7,280
Microplastics trapped in soil aggregates of different land-use types: A case study of Loess Plateau terraces, China
2022
Cheung, Joys H. Y. | Huiyan, | An, Shaoshan | Zhao, Junfeng | Xiao, Li | Li, Haohao | Huang, Qian
Land-use types may affect soil aggregates' stability and organic carbon (OC) distribution characteristics, but little is known about the effects on the distribution characteristics of microplastics (MPs) in the aggregates. Hence, the MPs abundance of soil aggregates and analyzed aggregates’ stability, composition, and OC content from two soil layers of four land-use types in Gansu Province were investigated in this study. The total MPs abundances in woodland, farmland (wheat, maize, and potato), orchard, and intercropping (potato + apple orchard) of top and deep soils were 1383.3 and 1477.9, 1324.6 and 931.1, 1757.1 and 1930.9, 2127.2 and 1998.0, 1335.9 and 886.7, and 1777.5 and 1683.3 items kg⁻¹, respectively. The largest MPs abundance was detected in the >5 mm fractions of topsoil in potato (3077.3 items kg⁻¹), followed by maize (3044.7 items kg⁻¹) and intercropping (2718.4 items kg⁻¹). In the topsoil, the total MPs abundance increased significantly with decreasing aggregate stability, and also was positively correlated with bulk density, microbial biomass, and total nitrogen contents of bulk soil. Summarizing, the abundance distribution of MPs correlates with the soil aggregate characteristics of the different land-use types.
اظهر المزيد [+] اقل [-]Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development
2022
Zhao, Miaomiao | Yin, Nuoya | Yang, Renjun | Li, Shichang | Zhang, Shuxian | Faiola, Francesco
Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs’ potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
اظهر المزيد [+] اقل [-]Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups
2022
Tang, Sijing | Qian, Jin | Wang, Peifang | Lu, Bianhe | He, Yuxuan | Yi, Ziyang | Zhang, Yuhang
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
اظهر المزيد [+] اقل [-]Shift of calcium-induced Microcystis aeruginosa colony formation mechanism: From cell adhesion to cell division
2022
Huang, Xuhui | Gu, Peng | Wu, Hanqi | Wang, Zhikai | Huang, Suzhen | Luo, Xingzhang | Zheng, Zheng
Colony formation is an essential stage of cyanobacterial blooms. High calcium concentration can promote Microcystis aeruginosa aggregation behavior, but the mechanism of colony formation caused by calcium has rarely been reported. In this study, high calcium-induced colony formation was identified as a shift from cell adhesion to cell division, rather than only cell adhesion as previously thought. Algae responded to this calcium-induced environmental pressure by aggregating and forming colonies. Algal cells initially secreted large quantities of extracellular polysaccharides (EPS) and rapidly aggregated by cell adhesion. The highest aggregation proportion was up to 68.93%. However, high calcium concentrations cannot completely inhibit algal cell growth, but only delay the algae into the rapid growth phase. With adaption to calcium and existing high EPS content, the daughter cells reduced EPS synthesis and the aggregation proportion decreased. The increasing growth rate was also responsible for the decreased xylose content in EPS. The mechanism of colony formation changed to cell division. The downregulation of genes related to EPS secretion also supported this hypothesis. Overall, these results can benefit for our understanding of cyanobacterial bloom formation.
اظهر المزيد [+] اقل [-]Impact of short-term control measures on air quality: A case study during the 7th Military World Games in central China
2022
Mao, Yao | Liu, Weijie | Hu, Tianpeng | Shi, Mingming | Cheng, Cheng | Zhan, Changlin | Zhang, Li | Zhang, Jiaquan | Sweetman, A. J. (Andrew J.) | Jones, K. C. (Kevin C.) | Xing, Xinli | Qi, Shihua
The 7th Military World Games held in Wuhan (WH) in Oct 2019 provided an opportunity to clarify the impact of short-term control measures on air quality. Fine particulate matters (PM₂.₅) were collected in WH, Huangshi (HS), and Huanggang (HG) during the control (Oct 13–28, 2019) and non-control periods (Oct 29- Nov 5, 2019). The results showed that air quality was good during the control period, with the concentrations of PM₂.₅ and gaseous pollutants being below the Grade Ⅱ of China Ambient Air Quality Standard. Concentrations of PM₂.₅ and its major chemical components in the control period were significantly lower than those in the non-control period, with reductions ranging from 17% (trace elements) to 46% (elemental carbon). However, higher contributions of secondary components such as SO₄²⁻, NO₃⁻, NH₄⁺ and secondary organic carbon (SOC) to PM₂.₅ were observed during the control period, suggesting the important role of secondary transformation. Potential source contribution function (PSCF) of PM₂.₅ showed that the main source regions were potentially located in surrounding cities Hubei Province, but regional transport can't be ignored. Six sources were identified by positive matrix factorization (PMF) for both control and non-control period. The contributions of combustion emissions and vehicle emissions were amplified in the control period, while the contribution of construction dust increased significantly when the control measures ended. Emission reductions contributed more to PM₂.₅ concentration decrease in WH (55%) than that in HS (51%) and HG (49%), which was consistent with the stricter control measures implemented in WH. These results indicated that short-term controls were effective at lowering PM₂.₅ concentration. However, the elevated contributions of secondary aerosols and the influence of regional transport on the study areas also need to be paid attention for air quality improvement in the future.
اظهر المزيد [+] اقل [-]Assessing the influence of sewage sludge and derived-biochar in immobilization and transformation of heavy metals in polluted soil: Impact on intracellular free radical formation in maize
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Munir, Mehr Ahmed Mujtaba | Arif, Muhammad | Ahmed, Rafay | Song, Yu
As one of the most common ways to get rid of municipal waste, landfill leachate, waste with complicated compositions and high levels of contaminants, has become a significant threat to the world's environment. Here, the impact of sewage sludge (SS) and derived-biochar (SSB) amendments on the immobilization and potential mobility of heavy metals in a contaminated soil-plant system was investigated. The sequential fractionation findings showed that using SS-2%, SSB-2%, and SSBC-1% reduced the potential mobility of heavy metals while increasing the residual fraction in polluted soils. The translocation and bioconcentration factors showed that heavy metals were slightly transferred into shoots from roots and lowered accumulation in roots from contaminated soils. Fourier transform infrared (FTIR) and X-ray photoelectron spectrum (XPS) comprehensive characterization results indicated the significant role of applied amendments for heavy metals transformation from the exchangeable-soluble fractions to the least available form by lowering their mobility to confirm the adsorption-based complexes, which results in the surface adsorption of heavy metals with functional groups. The electron paramagnetic resonance (EPR) results indicated the dominance of reactive oxygen species (ROS) in the intracellular formation of hydroxyl radicals (•OH) in maize plant roots and shoots. ROS (•OH) generation plays a critical influence in the interaction between the physiological processes of plants and heavy metals. Moreover, all the amendments increased maize growth and biomass production. Our study suggests that alone and combined application of SS and SSB have great potential to remediate heavy metals contaminated soil for environmental sustainability.
اظهر المزيد [+] اقل [-]Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles
2022
Zerboni, Alessandra | Rossi, Tommaso | Bengalli, Rossella | Catelani, Tiziano | Rizzi, Cristiana | Priola, Marco | Casadei, Simone | Mantecca, Paride
Incomplete combustion processes in diesel engines produce particulate matter (PM) that significantly contributes to air pollution. Currently, there remains a knowledge gap in relation to the physical and chemical characteristics and also the biological reactivity of the PM emitted from old- and new-generation diesel vehicles. In this study, the emissions from a Euro 3 diesel vehicle were compared to those from a Euro 6 car during the regeneration of a diesel particulate filter (DPF). Different driving cycles were used to collect two types of diesel exhaust particles (DEPs). The particle size distribution was monitored using an engine exhaust particle sizer spectrometer and an electrical low-pressure impactor. Although the Euro 6 vehicle emitted particulates only during DPF regeneration that primarily occurs for a few minutes at high speeds, such emissions are characterized by a higher number of ultrafine particles (<0.1 μm) compared to those from the Euro 3 diesel vehicle. The emitted particles possess different characteristics. For example, Euro 6 DEPs exhibit a lower PAH content than do Euro 3 samples; however, they are enriched in metals that were poorly detected or undetected in Euro 3 emissions. The biological effects of the two DEPs were investigated in human bronchial BEAS-2B cells exposed to 50 μg/mL of PM (corresponding to 5.2 μg/cm²), and the results revealed that Euro 3 DEPs activated the typical inflammatory and pro-carcinogenic pathways induced by combustion-derived particles, while Euro 6 DEPs were less effective in regard to activating such biological responses. Although further investigations are required, it is evident that the different in vitro effects elicited by Euro 3 and Euro 6 DEPs can be correlated with the variable chemical compositions (metals and PAHs) of the emitted particles that play a pivotal role in the inflammatory and carcinogenic potential of airborne PM.
اظهر المزيد [+] اقل [-]Size-specific sensitivity of cladocerans to freshwater salinization: Evidences from the changes in life history and population dynamics
2022
Huang, Jing | Li, Yurou | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.
اظهر المزيد [+] اقل [-]Contamination characteristics of energetic compounds in soils of two different types of military demolition range in China
2022
Zhang, Huijun | Zhu, Yongbing | Wang, Shiyu | Zhao, Sanping | Nie, Yaguang | Liao, Xiaoyong | Cao, Hongying | Yin, Hao | Liu, Xiaodong
The pollution of energetic compounds (ECs) in military ranges has become the focus of worldwide attention. However, few studies on the contamination of ECs at Chinese military ranges have been reported to date. In this study, two different types of military demolition range in China, Dunhua (DH) and Taiyuan (TY), were investigated and the ECs in their soils were determined. 10 ECs were detected at both ranges. While all the contamination characteristics were distinct, 2,4,6-trinitrotoluene (TNT) was the most abundant contamination source in soils at DH range, with an average concentration of 1106 mg kg⁻¹ and a maximum concentration of 34,083 mg kg⁻¹. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two mono-amino degradation products of TNT were also found to have high concentrations, with potential ecological and human health risks. In contrast, the concentrations of ECs in soils of TY range were much lower. The content of RDX was most significant, with average and maximum concentrations of 7.8 and 158 mg kg⁻¹, respectively. However, the potential threat to human health of 2,4-dinitrotoluene and 2,6-dinitrotoluene in soils at both ranges should not be ignored. The differences in pollution characteristics of the ECs at DH and TY are closely related to the types and amounts of the munitions destroyed. Moreover, the spatial distribution of ECs at the demolition ranges was extremely heterogeneous, which may be attributed to the use of open burning / open detonation and the non-homogeneous composition of the munitions.
اظهر المزيد [+] اقل [-]Inorganic and methylated mercury dynamics in estuarine water of a salt marsh in Massachusetts, USA
2022
Wang, Ting | Obrist, Daniel
Salt marsh estuaries serve as sources and sinks for nutrients and elements to and from estuarine water, which enhances and alleviates watershed fluxes to the coastal ocean. We assessed sources and sinks of mercury in the intertidal Plum Island Sound estuary in Massachusetts, the largest salt marsh estuary of New England, using 25-km spatial water sampling transects. Across all seasons, dissolved (FHg) and total (THg) mercury concentrations in estuarine water were highest and strongly enhanced in upper marshes (1.31 ± 0.20 ng L⁻¹ and 6.56 ± 3.70 ng L⁻¹, respectively), compared to riverine Hg concentrations (0.86 ± 0.17 ng L⁻¹ and 0.88 ± 0.34 ng L⁻¹, respectively). Mercury concentrations declined from upper to lower marshes and were lowest in ocean water (0.38 ± 0.10 ng L⁻¹ and 0.56 ± 0.25 ng L⁻¹, respectively). Conservative mixing models using river and ocean water as endmembers indicated that internal estuarine Hg sources strongly enhanced estuarine water Hg concentrations. For FHg, internal estuarine Hg contributions were estimated at 26 g yr⁻¹ which enhanced Hg loads from riverine sources to the ocean by 44%. For THg, internal sources amounted to 251 g yr⁻¹ and exceeded riverine sources six-fold. Proposed sources for internal estuarine mercury contributions include atmospheric deposition to the large estuarine surface area and sediment re-mobilization, although sediment Hg concentrations were low (average 23 ± 2 μg kg⁻¹) typical of uncontaminated sediments. Soil mercury concentrations under vegetation, however, were ten times higher (average 200 ± 225 μg kg⁻¹) than in intertidal sediments suggesting that high soil Hg accumulation might drive lateral export of Hg to the ocean. Spatial transects of methylated Hg (MeHg) showed no concentration enhancements in estuarine water and no indication of internal MeHg sources or formation. Initial mass balance considerations suggest that atmospheric deposition may either be in similar magnitude, or possibly exceed lateral tidal export which would be consistent with strong Hg accumulation observed in salt marsh soils sequestering Hg from current and past atmospheric deposition.
اظهر المزيد [+] اقل [-]