خيارات البحث
النتائج 2761 - 2770 من 4,936
Elucidating the dechlorination mechanism of hexachloroethane by Pd-doped zerovalent iron microparticles in dissolved lactic acid polymers using chromatography and indirect monitoring of iron corrosion النص الكامل
2019
Rodrigues, Romain | Betelu, Stéphanie | Colombano, Stéfan | Masselot, Guillaume | Tzedakis, Theodore | Ignatiadis, Ioannis
The degradation mechanism of the pollutant hexachloroethane (HCA) by a suspension of Pd-doped zerovalent iron microparticles (Pd-mZVI) in dissolved lactic acid polymers and oligomers (referred to as PLA) was investigated using gas chromatography and the indirect monitoring of iron corrosion by continuous measurements of pH, oxidation-reduction potential (ORP), and conductivity. The first experiments took place in the absence of HCA, to understand the evolution of the Pd-mZVI/PLA/H₂O system. This showed that the evolution of pH, ORP, and conductivity is related to changes in solution chemistry due to iron corrosion and that the system is initially cathodically controlled by H⁺ mass transport to Pd surfaces because of the presence of an extensive PLA layer. We then investigated the effects of Pd-mZVI particles, temperature, initial HCA concentration, and PLA content on the Pd-mZVI/PLA/HCA/H₂O system, to obtain a better understanding of the degradation mechanism. In all cases, HCA dechlorination first requires the production of atomic hydrogen H*—involving the accumulation of tetrachloroethylene (PCE) as an intermediate—before its subsequent reduction to non-chlorinated C₂ and C₄ compounds. The ratio between Pd-mZVI dosage, initial HCA concentration, and PLA content affects the rate of H* generation as well as the rate-determining step of the process. A pseudo-first-order equation can be applied when Pd-mZVI dosage is much higher than the theoretical stoichiometry (600 mg for [HCA]₀ = 5–20 mg L⁻¹). Our results indicate that the HCA degradation mechanism includes mass transfer, sorption, surface reaction with H*, and desorption of the product.
اظهر المزيد [+] اقل [-]Synthetic agrochemicals: a necessary clarification about their use exposure and impact in crop protection النص الكامل
2019
Marchand, Patrice A.
Synthetic pesticides are largely decried. A common attitude against the synthetic agrochemicals is to avoid, criticise or ban these substances. Along with chemical pesticides to defend crops from bioagressors are microorganisms, semiochemical and natural substances used as plant protection products including biocontrol agents (BCAs) and crop protection products in organic production. Nevertheless, a natural substance status does not confer or imply safety, security or absence of residues (in the context of plant protection). Although in this paper we do not consider the toxicological perspective of highly toxic chemicals with adverse effects on humans and non-target organisms sprayed on crops, we have applied ourselves to working on the safe use of synthetic agrochemicals. Thus, along with biopesticides (either BCA or others) allowed in organic farming, we show that some synthetic chemical pesticides may be used in safe manner. HIGHLIGHTS: • Synthetic agrochemicals are widely criticised. • Some pesticide usages are not sprayed on crops. • Some biocontrol agents are of synthetic origin.
اظهر المزيد [+] اقل [-]Exposure to phthalates and bisphenol A is associated with higher risk of cardiometabolic impairment in normal weight children النص الكامل
2019
Mansouri, Vahid | Ebrahimpour, Karim | Poursafa, Parinaz | Riahi, Roya | Shoshtari-Yeganeh, Bahareh | Hystad, Perry | Kelishadi, Roya
Some obese individuals have normal metabolic profile, and some normal-weight persons have impaired metabolic status. Our hypothesis was that one of the potential underlying factors for such differences in cardiometabolic profiles might be the exposure to some environmental chemicals. This study aimed to investigate the association of serum bisphenol A (BPA) and phthalate metabolites with cardiometabolic risk factors in children and adolescents independent of their weight status. This case–control study was conducted on a subsample of 320 participants of a national school-based surveillance program in Iran. We measured serum BPA and phthalate metabolites by gas chromatography mass spectrophotometry. We compared them in children and adolescents with and without excess weight and those with and without cardiometabolic risk factors (80 in each group). We categorized the concentrations of chemicals to tertiles and then we applied logistic regression models after adjustment for potential confounding factors. The concentrations of BPA and some metabolites of phthalates were significantly different in the four groups studied. MEHP concentration was associated with higher odds ratio of cardiometabolic risk factors in participants with normal weight (OR, 95% CI 2.82, 1.001–7.91) and those with excess weight (OR, 95% CI 3.15, 1.27–7.83). MBP concentration increased the odds ratio of cardiometabolic risk factors only in normal weight children and adolescents (OR, 95% CI 6.59, 2.33–18.59, P < 0.001). In participants without cardiometabolic risk factor, MMP and MEHHP were significantly associated with increased risk of excess weight (OR, 95% CI 5.90, 1.21–28.75 and 7.82, 1.5–41.8, respectively). This study showed that the association of BPA and phthalate with cardiometabolic risk factors is independent of the weight status. Our findings suggest that the metabolic impairment in some normal weight children and normal metabolic profile of some obese children can be, in part, related to exposure to these environmental chemicals. Graphical abstract
اظهر المزيد [+] اقل [-]Performances of Pichia kudriavzevii in decolorization, biodegradation, and detoxification of C.I. Basic Blue 41 under optimized cultural conditions النص الكامل
2019
Roșu, Crăița Maria | Vochița, Gabriela | Mihășan, Marius | Avădanei, Mihaela | Mihai, Cosmin Teodor | Gherghel, Daniela
The aim of this study was to evaluate the performances of Pichia kudriavzevii CR-Y103 yeast strain for the decolorization, biodegradation, and detoxification of cationic dye C.I. Basic Blue 41, a toxic compound to aquatic life with long-lasting effects. Under optimized cultural conditions (10.0-g L⁻¹ glucose, 0.2-g L⁻¹ yeast extract, and 1.0-g L⁻¹ (NH₄)₂SO₄), the yeast strain was able to decolorize 97.86% of BB41 (50 mg L⁻¹) at pH 6 within 4 h of incubation at 30 °C under shaken conditions (12,238.00-μg h⁻¹ average decolorization rate) and 100% within 12 h. The UV-Vis spectral analysis, high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the complete decolorization and degradation of the BB41 dye by P. kudriavzevii CR-Y103. Also, other seven yeast strains, isolated from soil, as P. kudriavzevii (CR-Y108, CR-Y119, and CR-Y112), Candida tropicalis CR-Y128, Cyberlindnera saturnus CR-Y125, and Candida solani CR-Y124 have shown a promising decolorizing potential of azo-dye BB41 (99.89–76.09% decolorization). Phytotoxicity, cytotoxicity, and genotoxicity assays on Trifolium pratense and Triticum aestivum seedlings confirmed the high toxicity of BB41 dye (500 ppm), with inhibition on germination rate (%), root and shoot elongation, decreasing of mitoxic index value (with 34.03% in T. pratense and 40.25% in T. aestivum), and increasing the frequency of chromosomal aberrations (6.87 times in T. pratense and 6.25 times in T. aestivum), compared to control. The same biomarkers indicated the nontoxic nature of the BB41 degraded metabolite (500 ppm) obtained after P. kudriavzevii CR-Y103 treatment. Moreover, the healthy monkey kidney cells (Vero cells) had a low sensitivity to BB41 biodegraded products (250 μg mL⁻¹) (MTT cell viability assay) and revealed minor DNA damage (comet assay) compared to BB41 dye treatment. These findings show that P. kudriavzevii could be used in eco-friendly bioremediation technologies, applicable for reducing the toxicity of basic azo-dyes containing wastewaters.
اظهر المزيد [+] اقل [-]Scale and process design for sewage treatment plants in airports using multi-objective optimization model with uncertain influent concentration النص الكامل
2019
Yao, Liming | He, Linhuan | Chen, Xudong
The treatment of airport sewage has posed many novel challenges because of its huge impact on the surrounding environment. This paper proposes a multi-objective decision model to optimize the scale design and process selection of sewage treatment plants in airports. In this model, we consider the conflict among the process cost, environmental protection, and benefits of recycled water. In addition, the uncertainty in influent concentration and passenger throughput is also incorporated. Airport sewage treatment has its own unique features, such as the concentration of airport sewage is higher than that of ordinary urban sewage, the change in passenger throughput impacts the volume of the airport sewage treatment, and the utilization rate of the entire sewage treatment plant must be higher than or equal to 70%. Only in this case can the airport sewage treatment plant pass the acceptance test. The Tianfu International Airport, the largest civil transportation hub airport project in southwestern China, is used to prove the efficiency of the proposed model. Finally, some significant insights are suggested for the design of wastewater treatment plants in airports.
اظهر المزيد [+] اقل [-]Occurrence, speciation, and risks of trace metals in soils of greenhouse vegetable production from the vicinity of industrial areas in the Yangtze River Delta, China النص الكامل
2019
Yang, Lanqin | Liu, Guoming | Di, Lin | Wu, Xiangyang | You, Wenhua | Huang, Biao
The effect of industrial activities on trace metals in farmland of rapidly industrializing regions in developing countries has increasingly been a concern to the public. Here, soils were collected from 13 greenhouse vegetable production (GVP) farms or bases near industrial areas in the Yangtze River Delta of China to investigate the occurrence, speciation, and risks of Cr, Cu, Zn, Cd, Ni, and Pb in GVP soil. The results revealed that the main metal elements causing GVP soil pollution were Cd, Zn, Ni, and Cu, of which contamination levels were generally unpolluted to moderately polluted. Zinc pollution was mainly attributed to heavy fertilization, while Cd, Ni, and Cu pollution may be greatly ascribed to industrial effluents and coal combustion. Metal speciation studies showed that most of Cr, Ni, Cu, and Zn was present in residual fraction while more than half of Cd and Pb was present in non-residual fractions. Additionally, pollution of Cd, Cu, Ni, and Zn in GVP soil increased their corresponding mobile fractions. Risk assessment using potential ecological risk index and risk assessment code showed that Cd was the major risk contributor. Specifically, Cd generally posed moderate or considerable ecological risk as well as displayed medium or high mobility risk in GVP soil. Thus, great attention should be paid to the contribution of both industrial discharges and intensive farming to soil pollution by trace metals, especially Cd, because of its high mobility risk.
اظهر المزيد [+] اقل [-]Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands النص الكامل
2019
Lamori, Jennifer G. | Xue, Jia | Rachmadi, Andri T. | Lopez, Gerardo U. | Kitajima, Masaaki | Gerba, Charles P. | Pepper, Ian L. | Brooks, John P. | Sherchan, Samendra
Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log₁₀ gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log₁₀ GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively.
اظهر المزيد [+] اقل [-]Particulate matters and gaseous pollutants in indoor environment and Association of ultra-fine particulate matters (PM1) with lung function النص الكامل
2019
Akther, Tanzina | Ahmed, Morshad | Shohel, Mohammad | Ferdousi, Farhana Khanom | Salam, Abdus
Real-time particulate matters (PM₁, PM₂.₅, PM₄, PM₇, PM₁₀, and TSP) with AEROCET 531S (USA), gaseous pollutants (NO₂ and TVOC) with Aeroquel 500 gas sampler (NZ) were measured from the indoor air of houses at four residential locations in Dhaka, Bangladesh. PM₁₀ samples were collected on quartz filters with a dual channel dust sampler (IPM-FDS 2510, India) for selected trace metal determination from five houses of Dhaka. Respiratory function of the occupants was assessed by using a peak expiratory flow meter (Rossmax PF 120). Mean PM₁, PM₂.₅, and PM₁₀ concentrations were 46.1 ± 13.4, 76.0 ± 16.2, and 203.9 ± 44.8 μg m⁻³, respectively. Higher enrichment factors of Pb, Zn, and Ni were found for traffic, industrial, and constructional activities. The correlation between indoor and outdoor PM₂.₅ (R² = 0.42) and ratios (I/O < 1) suggesting indoor air was effected by outdoor air. The concentration of NO₂ (0.076 ± 0.007 ppm) and TVOC (90.0 ± 46.0 ppm) was found above than other studies. The average total hazard ratio (THR) in Dhaka was 9.06 and has the highest exposure to air pollutants (PM₂.₅, PM₁₀, NO₂) in Khilkhet (THR 10.1) residents. A negative association between ultra-fine particles (PM₁) and peak flow rate measurements of the residents living in these houses indicates that inhalations of ultra-fine particles has great influence on the reduced lung efficiency.
اظهر المزيد [+] اقل [-]Deriving water quality criteria for China for the organophosphorus pesticides dichlorvos and malathion النص الكامل
2019
Ding, Ting-ting | Zhang, Ya-hui | Zhu, Yan | Du, Shi-lin | Zhang, Jin | Cao, Ying | Wang, Yi-zhe | Wang, Gong-ting | He, Lian-sheng
Organophosphorus pesticides are effective, cheap, and used extensively but can harm aquatic organism and human health. Here, water quality criteria (WQCs) for dichlorvos (DDVP) and malathion (MAL) were derived. Nine aquatic organisms native to China were used in toxicity tests. Published toxicity data for aquatic organisms native and non-native to China were also analyzed. DDVP and MAL WQCs were derived using (log-normal model) species sensitivity distributions. Species sensitivity distribution curves indicated native and non-native species have different sensitivities to DDVP. The sensitivities of native and non-native species to MAL were not different because non-native species data for fewer than eight genera were available, so further research is required. The results indicated that native species need to be considered when deriving WQCs. The criteria maximum concentration (CMC) and criteria continuous concentration (CCC) were 1.33 and 0.132 μg/L, respectively, for DDVP, and 0.100 and 0.008 μg/L, respectively, for MAL. The CMCs for DDVP and MAL derived using ETX 2.0 software and species sensitivity ranks were different from the CMCs obtained using the SSD method because of parameter uncertainties. The DDVP and MAL WQCs were significantly lower than Chinese surface water quality standard thresholds. The results provide basic data for revising these thresholds.
اظهر المزيد [+] اقل [-]Fenton’s reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds النص الكامل
2019
Talvenmäki, Harri | Lallukka, Niina | Survo, Suvi | Romantschuk, Martin
Fenton’s reaction-based chemical oxidation is in principle a method that can be utilized for all organic fuel residues thus making it a potential all-purpose, multi-contaminant, in situ application for cases in which storage and distribution of different types of fuels have resulted in contamination of soil or groundwater. Since peroxide breakdown reactions are also expected to lead to a physical transport of the target compound, this secondary physical removal, or rebound concentrations related to it, is prone to be affected by the chemical properties of the target compound. Also, since soil conditions are seldom optimal for Fenton’s reaction, the balance between chemical oxidation and transport may vary. In this study, it was found that, with a high enough hydrogen peroxide concentration (5 M), methyl tert-butyl ether–spiked groundwater could be treated even under suboptimal conditions for chemical mineralization. In these cases, volatilization was not only contributing to the total removal but also leading to rebound effects similar to those associated with air sparging techniques. Likewise for diesel, temporal transport from soil to the aqueous phase was found to lead to false positives that outweighed the actual remediation effect through chemical mineralization.
اظهر المزيد [+] اقل [-]