خيارات البحث
النتائج 281 - 290 من 4,938
Fiproles in urban surface runoff: Understanding sources and causes of contamination النص الكامل
2019
Cryder, Zachary | Greenberg, Les | Richards, Jaben | Wolf, Douglas | Luo, Yuzhou | Gan, Jay
Urban-use pesticides present a unique risk to non-target organisms in surface aquatic systems because impervious pavement facilitates runoff that may lead to serious contamination and ensuing aquatic toxicity. Fipronil is an insecticide used at high rates in urban environments, especially in regions such as California. This compound and its biologically active degradation products have been detected in urban runoff drainage and downstream surface water bodies at concentrations exceeding toxicity thresholds for sensitive aquatic invertebrates, necessitating a better understanding of the runoff sources and causes of this contamination at sites of application. In this study, we evaluated sorption of fipronil, fipronil desulfinyl, fipronil sulfide, and fipronil sulfone in urban dust, soil, and concrete, matrices commonly associated with the perimeter of a residential home. Samples were also collected from five single family homes treated with fipronil in Riverside, California, for five months to determine the occurrence of fipronil and its degradates in runoff water, urban dust, soil, and on concrete surfaces. Statistical analysis was performed to determine which urban matrices contributed more significantly to the contaminant levels in runoff water. Freundlich sorption coefficients for fipronil and its degradation products in dust were 3- to 9-fold greater than their values in soil. Fipronil and its degradates were detected in 100% of runoff samples and their presence was observed in dust, soil, and concrete wipe samples for 153 d after the treatment. Linear regression analysis showed that concrete surfaces were a primary source of all four compounds to runoff, and loose dust on concrete pavement also served as an important contributor. This study represents the first comprehensive investigation of the sources and causes for surface runoff contamination by fipronil and its degradation products. Findings highlight the importance to reduce fipronil residues on concrete surfaces through improved application methods and other mitigation practices.
اظهر المزيد [+] اقل [-]Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter النص الكامل
2019
Martin, Perrine J. | Héliot, Amélie | Trémolet, Gauthier | Landkocz, Yann | Dewaele, Dorothée | Cazier, Fabrice | Ledoux, Frédéric | Courcot, Dominique
Exposure to fine atmospheric Particulate Matter (PM) is one of the major environmental causes involved in the development of inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD) or asthma. When PM is penetrating in the pulmonary system, alveolar macrophages represent the first line of defense, in particular by triggering a pro-inflammatory response, and also by their ability to recruit infiltrating macrophages from the bone marrow. The aim of this in vitro study was to evaluate the gene expression and cytokine production involved in the toxicological and inflammatory responses of infiltrating macrophages, as well as the Extracellular Vesicles (EVs) production, after their exposure to PM. The ability of these EVs to convey information related to PM exposure from exposed macrophages to pulmonary epithelial cells was also evaluated.Infiltrating macrophages respond to fine particles exposure in a conventional manner, as their exposure to PM induced the expression of Xenobiotic Metabolizing Enzymes (XMEs) such as CYP1A1 and CYP1B1, the enzymes involved in oxidative stress SOD2, NQO1 and HMOX as well as pro-inflammatory cytokines in a dose-dependent manner. Exposure to PM also induced a greater release of EVs in a dose-dependent manner. In addition, the produced EVs were able to induce a pro-inflammatory phenotype on pulmonary epithelial cells, with the induction of the release of IL6 and TNFα proinflammatory cytokines. These results suggest that infiltrating macrophages participate in the pro-inflammatory response induced by PM exposure and that EVs could be involved in this mechanism.
اظهر المزيد [+] اقل [-]Long-term effects of environmentally relevant concentration of Ag nanoparticles on the pollutant removal and spatial distribution of silver in constructed wetlands with Cyperus alternifolius and Arundo donax النص الكامل
2019
Cao, Chong | Huang, Juan | Guo, Yang | Yan, Chun Ni | Xiao, Jun | Ma, Yi Xuan | Liu, Jia Liang | Guan, Wen Zhu
The widely usage of silver nanoparticles in a range of consumer products inevitably results in its being released to the wastewater. As a result, the potential negative effects associated with AgNPs on wastewater treatment systems need to be assessed to develop the regulatory guidelines. In this paper, the exposure experiment at environmentally relevant concentration (100 μg L⁻¹) were conducted to demonstrate the effects of AgNPs on the pollutant removals in constructed wetlands (CWs) with different plants and the spatial distribution of silver. Before adding AgNPs, the system with Arundo donax (VF2) had the better nitrogen removal than Cyperus alternifolius (VF1). After exposure for about 94 d, the average removal efficiencies of NH₄⁺-N significantly reduced by 32.43% and 23.92%, TN of 15.82% and 17.18% and TP of 22.74% and 20.46% in VF1 and VF2, respectively, while the COD removal had no difference. However, presence of 100 μg L⁻¹ AgNPs for about 450 d showed no inhibition effects on nutrient removals in two experimental CWs. Two wetlands showed high removal efficiencies of about 98% on AgNPs, indicating CWs could play a crucial role to control the AgNPs release to environment. It was found that AgNPs mainly accumulated in the soil layer with the Ag content of 0.45–5.96 μg g⁻¹ dry weight in lower soil and 2.84–11.37 μg g⁻¹ dry weight in upper soil. The roots of Cyperus alternifolius absorbed more AgNPs, with higher bioconcentration factors (1.32–1.44) than that of 0.59 in Arundo donax. The differences of translocation factors on leaves and stems in two test plants showed that AgNPs assimilated by roots in Cyperus alternifolius were more easily transferred to the leaves. The obtained results showed that the macrophyte Cyperus alternifolius could be better choice for immobilization of AgNPs.
اظهر المزيد [+] اقل [-]Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus النص الكامل
2019
Pidlisnyuk, Valentina | Erickson, Larry | Stefanovska, Tatyana | Popelka, Jan | Hettiarachchi, Ganga | Davis, Lawrence | Trögl, Josef
This study aims to summarize results on potential phytomanagement of two metal(loid)-polluted military soils using Miscanthus x giganteus. Such an option was tested during 2-year pot experiments with soils taken from former military sites in Sliač, Slovakia and Kamenetz-Podilsky, Ukraine. The following elements were considered: As, Cu, Fe, Mn, Pb, Sr, Ti, Zn and Zr. M. x giganteus showed good growth at both military soils with slightly higher maximum shoot lengths in the second year of vegetation. Based on Principal Component Analysis similarities of metal(loid) uptake by roots, stems and leaves were summarized. Major part of the elements remained in M. x giganteus roots and rather limited amounts moved to the aerial parts. Levels taken up decreased in the second vegetation year. Dynamics of foliar metal(loid) concentrations divided the elements in two groups: essential elements required for metabolism (Fe, Mn, Cu, and Zn) and non-essential elements without any known metabolic need (As, Sr, Ti, and Zr). Fe, Mn, Ti and Sr showed similar S-shaped uptake curve in terms of foliar concentrations (likely due to dilution in growing biomass), while Cu exhibited a clear peak mid-season. Behavior of Zn was in between. Foliar Zr and As concentrations were below detection limit. The results illustrated a good potential of M. x giganteus for safely growing on metal-polluted soils taken from both military localities.
اظهر المزيد [+] اقل [-]In vitro toxicological evaluation of ionic liquids and development of effective bioremediation process for their removal النص الكامل
2019
Thamke, Viresh R. | Chaudhari, Ashvini U. | Tapase, Savita R. | Paul, Dhiraj | Kodam, Kisan M.
The present study deals with the cyto-genotoxicological impact of ionic liquids, 1-butyl-3-methylimidazolium bromide, trihexyl tetradecylphosphonium dicyanamide, 1-decyl-3-methylimidazolium tetrafluoroborate, benzyldimethyltetradecylammonium chloride, and 1-butyl-4-methylpyridinium chloride, on animal cells and their biodegradation. The long alkyl chain containing ionic liquids were found to be more toxic whereas benzene functional group in benzyldimethyltetradecylammonium chloride enhances its toxicity. Aerobic bacterial granules, a bacterial consortium, were developed that have promising ability to break down these organic pollutants. These aerobic bacterial granules have been applied for the biodegradation of ionic liquids. The biological oxygen demand (5 days) and chemical oxygen demand parameters confirmed that the biodegradation was solely due to aerobic bacterial granules which further decreased the time period needed for regular biodegradation by biological oxygen demand (28 days). The high resolution mass spectrometry analysis further approved that the degradation of ionic liquids was mainly via removal of the methyl group. Elevated N-demethylase enzyme activity supports the ionic liquids degradation which may be occurring through demethylation mechanism. The amplicon sequencing of aerobic bacterial granules gives insight into the involvement of the bacterial community in the biodegradation process.
اظهر المزيد [+] اقل [-]Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing النص الكامل
2019
Wang, Haofei | Li, Zhengqiang | Lv, Yang | Xu, Hua | Li, Kaitao | Li, Donghui | Hou, Weizhen | Zheng, Fengxun | Wei, Yuanyuan | Ge, Bangyu
Atmospheric aerosols have been found to influence the development of planetary boundary layer (PBL) and hence to aggravate haze pollution in megacities. PBL height (PBLH) determines the vertical extent to which the most pollutant effectively disperses and is a key argument in pollution study. In this study, we quantitatively evaluate aerosol radiation effect on PBL, as well as assessment of surface cooling effect and atmosphere heating effect. All the data are measured at a site of Beijing from 2014 to 2017, of which PBLH is retrieved from micro pulse lidar and aerosol optical depth (AOD) from sunphotometer. Case study shows qualitatively that relative high aerosol load reduces PBLH, and in turn causes a high surface PM₂.₅ concentration. We preliminarily reveal the influential mechanism of aerosol on PBL. The influence of aerosol on the radiation flux of PBL is analyzed, with the correlation coefficient (R) of 0.938 between AOD and radiative forcing of BOA (RFBOA) and R = 0.43 between RFBOA and PBLH. Also, AOD is found to negatively correlate with PBLH (R = −0.41). With the increase of AOD, the cooling effect of surface is enhanced, and further impede the development of PBL. Due to aerosol-induced reduction of PBLH, near surface PM₂.₅ concentration surges and presents an exponential growth following AOD. Then, it is speculated and testified that the relationship between SSA (single scatting albedo) and PBLH would be determined by the location of absorbing aerosol within PBL. The upper PBL absorbing aerosol may decrease PBLH, while the lower absorbing aerosol appear to enhance PBLH. The study probably can provide effective observational evidence for understanding the effect of aerosol on PBL and be a reference of air pollution mitigation in Beijing and its surrounding areas.
اظهر المزيد [+] اقل [-]Association between extracted copper and dissolved organic matter in dairy-manure amended soils النص الكامل
2019
Araújo, Eloá | Strawn, Daniel G. | Morra, M. J. (Matthew John) | Moore, Amber | Ferracciú Alleoni, Luis Reynaldo
Dairy manure often has elevated concentrations of copper (Cu) that when applied to soil may create toxicity risks to seedlings and soil microbes. Manure application also increases dissolved organic matter (DOM) in soil solution. We hypothesize that high rates of dairy manure amendment over several years will cause increased DOM in the soil that complexes Cu, increasing its mobility. To test this hypothesis, this study investigated water soluble Cu concentrations and dissolved organic carbon (DOC) in soil samples from 3 years of manure-amended soils. Samples were collected at two depths over the first 3 years of a long-term manure-amendment field trial. DOC, Cu, Fe, and P concentrations were measured in water extracts from the samples. Ultraviolet/visible (UV/Vis) spectra were used to assess the DOC characteristics. After 3 years of manure application, extractable Cu concentration was approximately four times greater in the surface and two times greater in subsurface samples of manure-amended soils as compared to non-amended control soils and traditional mineral fertilizer-amended soils. The extractable Cu concentration was greatest in plots that had the highest manure amendment rates (35 t ha⁻¹ and 52 t ha⁻¹, dry weight). The UV/Vis parameters SUVA₂₅₄ and E₂/E₃ correlated with Cu concentration in the extracts (p < 0.05), suggesting that DOC characteristics are important in Cu-binding. The molecular characteristics of the DOC in the subsurface after 3 years of manure amendment were distinct from the DOC in the control plot, suggesting that manure amendment creates mobile DOC that may facilitate Cu mobilization through soil. The 10-fold increase in extractable Cu concentration after only 3 years of manure application indicates that repeated applications of the dairy manure sources used in this study at rates of 35 t/ha or greater may create risks for Cu toxicity and leaching of Cu into ground and surface waters.
اظهر المزيد [+] اقل [-]Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan النص الكامل
2019
Ali, Waqar | Aslam, Muhammad Wajahat | Junaid, Muhammad | Ali, Kamran | Guo, Yongkun | Rasool, Atta | Zhang, Hua
The present study aims to investigate the spatial distribution and associated various geochemical mechanisms responsible for fluoride (F⁻) contamination in groundwater of unconfined aquifer system along major rivers in Sindh and Punjab, Pakistan. The concentration of F⁻ in groundwater samples ranged from 0.1 to 3.9 mg/L (mean = 1.0 mg/L) in Sindh and 0.1–10.3 mg/L (mean = 1.0 mg/L) in Punjab, respectively with 28.9% and 26.6% of samples exhibited F⁻ contamination beyond WHO permissible limit value (1.5 mg/L). The geochemical processes regulated F⁻ concentration in unconfined aquifer mainly in Sindh and Punjab were categorized as follows: 1) minerals weathering that observed as the key process to control groundwater chemistry in the study areas, 2) the strong correlation between F⁻ and alkaline pH, which provided favorable environmental conditions to promote F⁻ leaching through desperation or by ion exchange process, 3) the 72.6% of samples from Sindh and Punjab were dominated by Na⁺- Cl⁻ type of water, confirmed that the halite dissolution process was the major contributor for F⁻ enrichment in groundwater, 4) dolomite dissolution was main process frequently observed in Sindh, compared with Punjab, 5) the arid climatic conditions promote evaporation process or dissolution of evaporites or both were contributing to the formation of saline groundwater in the study area, 6) the positive correlation observed between elevated F⁻ and fluorite also suggested that the fluorite dissolution also played significant role for leaching of F⁻ in groundwater from sediments, and 7) calcite controlled Ca2⁺ level and enhanced the dissolution of F-bearing minerals and drive F⁻ concentration in groundwater. In a nut shell, this study revealed the worst scenarios of F⁻ contamination via various possible geochemical mechanisms in groundwater along major rivers in Sindh and Punjab, Pakistan, which need immediate attention of regulatory authorities to avoid future hazardous implications.
اظهر المزيد [+] اقل [-]DINP aggravates autoimmune thyroid disease through activation of the Akt/mTOR pathway and suppression of autophagy in Wistar rats النص الكامل
2019
Duan, Jiufei | Deng, Ting | Kang, Jun | Chen, Mingqing
Di-isononyl phthalate (DINP) is used as a substitute for traditional phthalates, in a wide range of applications. However, there is growing concern regarding its toxicity. Studies have indicated that DINP is related to thyroid hormone disorder and that phthalates can affect thyroid normal function. In this study, we aim to determine any effects of DINP exposure on autoimmune thyroid disease (AITD), the most common autoimmune disease, and to understand the underlying causal mechanism. AITD model Wistar rats were exposed to 0.15 mg/kg, 1.5 mg/kg or 15 mg/kg DINP. We assessed the thyroid globulin antibody levels, Th1/Th2 balance, histopathological changes and caspase-3 levels in the thyroid. The data show that exposure to DINP does indeed aggravate AITD. To explore the underlying mechanisms, we examined the levels of microtubule-associated protein 1 light chain 3 B (LC3B), Sequestosome 1 (SQSTM1) and the appearance of autophagosomes or autolysosomes to assess autophagy in the thyroid. The results show that DINP can suppress normal autophagy. We found that DINP induced an exacerbation of oxidative stress and the activation of the Akt/mTOR pathway, indicating that oxidative stress and activation of mTOR may play a key role in these processes. Moreover, the activation of mTOR also promoted the expression of IL-17. Importantly, blocking oxidative stress with VE or blocking Akt/mTOR with rapamycin mitigated the exacerbation of AITD and the suppression of normal autophagy. All these results indicate that exposure to DINP, especially high doses of DINP, can aggravate oxidative stress and activate the Akt/mTOR pathway. This exposure then leads to a suppression of normal autophagy and expression of IL-17 in the thyroid, resulting in an eventual exacerbation of AITD.
اظهر المزيد [+] اقل [-]Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride النص الكامل
2019
Ma, Jie | Zhao, Jinghua | Zhu, Zhilin | Li, Liqing | Yu, Fei
Microplastics in water environment and its ability to load various environmental pollutants have attracted wide attention in recent years. However, effect of microplastic size on the adsorption behavior of environmental pollutants and interaction mechanism has not been thoroughly explored. In this study, triclosan (TCS) was selected as model pollutant, and polyvinyl chloride (PVC) with different particle sizes (small size (<1 μm) is recorded as PVC-S and PVC-L means large particle size of about 74 μm) were used as the typical microplastics, the adsorption behavior of TCS on PVC was investigated by studying kinetics, isotherms, and other influencing factors, such as pH and salinity. The results indicate PVC-S has greater distribution coefficient kd values of TCS (1.35 L/g > 1.05 L/g) and stronger adsorption capacity (12.7 mg/g > 8.98 mg/g) compared with PVC-L, which may be due to higher specific surface area, stronger hydrophobicity and relatively small electronegative property of PVC-S. Moreover, the initial pH value and salinity of the solution played crucial role in the adsorption process. The distribution diffusion mechanisms (including liquid-film diffusion and intra-particle diffusion), hydrophobic interaction, electrostatic interaction, halogen bonding, and hydrogen bonding may be the important reasons for adsorption. These findings show that MPs with different particle sizes have vary adsorption behaviors and load capacities for environmental pollutants, which deserve our further concerned.
اظهر المزيد [+] اقل [-]