خيارات البحث
النتائج 2831 - 2840 من 4,033
Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures
2016
Kundi, M. (Michael) | Parrella, Alfredo | Lavorgna, Margherita | Criscuolo, Emma | Russo, Chiara | Isidori, Marina
The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET], and imatinib mesylate [IM]) were studied testing their binary mixtures in two crustaceans that are part of the freshwater food chain, namely Daphnia magna and Ceriodaphnia dubia. Genotoxicity was assessed using the in vivo comet assay. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results obtained for D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions, our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems.
اظهر المزيد [+] اقل [-]Dry reforming of methane to syngas: a potential alternative process for value added chemicals—a techno-economic perspective
2016
Mondal, Kartick | Sasmal, Sankar | Badgandi, Srikant | Chowdhury, Dipabali Roy | Nair, Vinod
During the past decade, there has been increasing global concern over the rise of anthropogenic CO₂ emission into the Earth’s atmosphere (J Air Waste Manage Assoc 53:645–715, 2003). The utilization of CO₂ to produce any valuable product is need of the hour. The production of syngas from CO₂ and CH₄ seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO₂, (b) transformation of natural gas and CO₂ into valuable syngas, and (c) producing syngas with H₂/CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645–715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO₂ import.
اظهر المزيد [+] اقل [-]Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery
2016
Le Faucheur, Séverine | Vasiliu, Dan | Catianis, Irina | Zazu, Mariana | Dranguet, Perrine | Beauvais-Flück, Rebecca | Loizeau, Jean-Luc | Cosio, Claudia | Ungureanu, Costin | Ungureanu, Viorel Gheorghe | Slaveykova, Vera I.
Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH₃Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH₃Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.
اظهر المزيد [+] اقل [-]A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment
2016
Wu, Xiangyang | Cobbina, Samuel J. | Mao, Guanghua | Xu, Hai | Zhang, Zhen | Yang, Liuqing
The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.
اظهر المزيد [+] اقل [-]Industrial-scale application of the plunger flow electro-oxidation reactor in wastewater depth treatment
2016
Huang, Guolong | Yao, Jiachao | Pan, Weilong | Wang, Jiade
Effluents after biochemical treatment contain pollutants that are mostly non-degradable. Based upon previous pilot-scale test results, an industrial-scale electro-oxidation device was built to decompose these refractory materials in the effluent from a park wastewater treatment plant. The electro-oxidation device comprised a ditch-shaped plunger flow electrolysis cell, with mesh-plate Ti/PbO₂ electrodes as the anode and the same size mesh-plate Ti as the cathode. Wastewater flowed vertically through electrodes; the effective volume of the cell was 2.8 m³, and the surface-to-volume ratio was 17.14 m² m⁻³. The optimal current density was 100 A m⁻², and a suitable flow velocity was 14.0 m h⁻¹. The removal efficiencies for chemical oxygen demand and color in the effluent were over 60.0 and 84.0 %, respectively. In addition, the electro-oxidation system offered a good disinfection capability. The specific energy consumption for this industrial-scale device was 43.5 kWh kg COD⁻¹, with a current efficiency of 32.8 %, which was superior to the pilot-scale one. To meet the requirements for emission or reuse, the operation cost was $0.44 per ton of effluent at an average price for electricity of $0.11 kWh⁻¹.
اظهر المزيد [+] اقل [-]Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release
2016
Dang, Tan | Mosley, Luke M. | Fitzpatrick, Rob | Marschner, Petra
When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L⁻¹ and Fe 48 mg L⁻¹) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05–0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.
اظهر المزيد [+] اقل [-]Evaluation of an extraction method for a mixture of endocrine disrupters in sediment using chemical and in vitro biological analyses
2016
Creusot, Nicolas | Dévier, Marie-Hélène | Budzinski, Hélène | Aït-Aïssa, Selim
Aquatic sediments are contaminated by a wide diversity of organic pollutants such as endocrine-disrupting chemicals (EDCs) which encompass a broad range of chemical classes having natural and anthropogenic origins. The use of in vitro bioassays is now widely accepted as an alternative method for their detection in complex samples. However, based on the diversity of EDC chemical properties, their common extraction is difficult and comprehensive validation of extraction methods for a bioanalysis purpose is still weakly documented. In this study, we compared the performance of several organic solvents, i.e., acetone, methanol, dichloromethane, heptane, dichloromethane/acetone (50:50, v/v), dichloromethane/methanol (50:50, v/v), heptane/acetone (50:50, v/v), and heptane/methanol (50:50, v/v), to extract a diversity of active chemicals from a spiked sediment matrix using pressurized liquid extraction. For this purpose, we defined a mixture of 12 EDCs with a wide range of polarity (2 < log Kow < 8) (i.e., estrone, 17β-estradiol, bisphenol A, o,p′DDT, 4-tert-octylphenol, fenofibrate, triphenyl phosphate, clotrimazole, PCB-126, 2,3,7,8 TCDD, benzo[k]fluoranthene, and dibenzo[a,h]anthracene). Working concentrations of each individual compound in the mixture were determined as equipotent concentrations on the basis of the concentration-addition (CA) model applied to in vitro estrogenic, dioxin-like, and pregnane X receptor (PXR)-like activities. Extraction efficiencies based on both chemical and biological analyses were assessed in triplicate in artificial blank sediment spiked with this mixture and in natural sediment contaminated by native EDCs. In both spiked and natural sediment, MeOH/DCM yields the best recovery while heptane was the least efficient solvent. Our study provided the validation of a sediment extraction methodology for EDC bioanalysis purposes, which can be used for comprehensive environmental contamination characterization.
اظهر المزيد [+] اقل [-]A study on identification of bacteria in environmental samples using single-cell Raman spectroscopy: feasibility and reference libraries
2016
Baritaux, Jean-Charles | Simon, A. C. (Anne Catherine) | Schultz, Emmanuelle | Emain, C. | laurent, P. | Dinten, Jean-Marc
We report on our recent efforts towards identifying bacteria in environmental samples by means of Raman spectroscopy. We established a database of Raman spectra from bacteria submitted to various environmental conditions. This dataset was used to verify that Raman typing is possible from measurements performed in non-ideal conditions. Starting from the same dataset, we then varied the phenotype and matrix diversity content included in the reference library used to train the statistical model. The results show that it is possible to obtain models with an extended coverage of spectral variabilities, compared to environment-specific models trained on spectra from a restricted set of conditions. Broad coverage models are desirable for environmental samples since the exact conditions of the bacteria cannot be controlled.
اظهر المزيد [+] اقل [-]Selective bioaccumulation and elimination of hexachlorocyclohexane isomers in Tubifex tubifex (Oligochaeta, Tubificidae)
2016
Di, Shanshan | Huang, Ledan | Diao, Jinling | Zhou, Zhiqiang
In this study, Tubifex tubifex worms were exposed to sediment-associated hexachlorocyclohexane (HCH) isomers to study the bioaccumulation and elimination behaviors of HCH isomers in T. tubifex. During a 10-day bioaccumulation experiment, bioaccumulation curves of HCHs were approximate to M-type in T. tubifex. The enantioselective behaviors of α-HCH enantiomers were observed in T. tubifex, with concentrations of (+)-α-HCH higher than that of (−)-α-HCH. The concentration of γ-HCH in T. tubifex was higher than that of β-HCH and α-HCH. The existence of worms can accelerate the dissipation of HCHs in sediment, and the dissipation half-lives of α-HCH, β-HCH, and γ-HCH were 8.39, 23.90, and 3.10 days, respectively. In the elimination experiment, approximately 0.053 (37.1 %), 0.074 (45.9 %), and 0.042 mg/kgwwₜ (38.4 %) α-HCH, β-HCH, and γ-HCH were depleted or excreted in T. tubifex on the first day, respectively. The body residues in T. tubifex were 0.084 (α-HCH), 0.082 (β-HCH), and 0.061 mg/kgwwₜ (γ-HCH) at the end of elimination experiment. Furthermore, the existence of T. tubifex could affect the overlying water quality parameters.
اظهر المزيد [+] اقل [-]Environmental pollution of polybrominated diphenyl ethers from industrial plants in China: a preliminary investigation
2016
Deng, Chao | Chen, Yuan | Li, Jinhui | Li, Ying | Li, Huafen
Although numerous studies have shown the presence of polybrominated diphenyl ethers (PBDEs) in various environmental media, attention to their distribution in the environmental media surrounding industrial facilities is limited. In this study, eight PBDEs congeners (BDE-28, −47, −99, −100, −153, −154, −183, −209) were investigated in surface soils and water samples collected from commercial PBDE manufacturers, flame-retardant plastic modification plants and waste electrical and electronic equipment recycling facilities in China. Analysis of target compounds was performed using the model NCI GC-MS in SIM mode. The concentrations of ∑₈PBDEs varied from 193.1 to 22,004.3 ng/L in water samples and from 1209.3 to 226,906 ng/g dry wt in surface soils, respectively. More severe PBDE contamination, when compared with previously reported data, was found in industrial areas in this study. This indicates that these industrial areas are highly polluted with PBDEs. BDE-209 was the predominant congener, accounting for more than 94 % in this study, except for a 68.75 % portion at one site. Our results show that PBDE manufacturing and flame-retardant plastic modification plants, easily overlooked by the public, are two primary PBDE pollution sources although they affect surrounding areas. Further research is needed, aimed at managing industrial PBDE emissions and eliminating environmental PBDE pollution, to investigate the material flows and environmental fates of PBDEs in all stages of the life cycle.
اظهر المزيد [+] اقل [-]