خيارات البحث
النتائج 291 - 300 من 5,014
Exploring the characteristics and sources of carbonaceous aerosols in the agro-pastoral transitional zone of Northern China النص الكامل
2019
Hao, Yufang | Meng, Xiangpeng | Yu, Xuepu | Lei, Mingli | Li, Wenjun | Yang, Wenwen | Shi, Fangtian | Xie, Shaodong
Carbonaceous aerosols are linked to severe haze and health effects, while its origins remain still unclear over China. PM2.5 samples covering four seasons from Jan. 2016 to Jan. 2017 were collected at six sites in Chifeng, a representative agro-pastoral transitional zone of North China focusing on the characteristics and sources of organic carbon (OC) and elemental carbon (EC). The annual averages of OC, EC were 9.00 ± 7.24 μg m−3, 1.06 ± 0.79 μg m−3 with site Songshan in coal mining region exhibited significantly enhanced levels. The residential heating emissions, air stagnation, and secondary organic formation all contributed the higher OC, EC levels in winter. Meanwhile, the impacts from open biomass burning were most intensive in spring. The retroplumes via Lagrangian model highlighted a strong seasonality of regional sources which had more impacts on EC increases. The Positive Matrix Factorization (PMF) model resolved six primary sources, namely, coal combustion, biomass burning, industrial processes, oil combustion, fugitive dust, and fireworks. Coal combustion and biomass burning comprised large fractions of OC (30.57%, 30.40%) and EC (23.26%, 38.47%) across the sites, while contributions of industrial processes and oil combustion clearly increased in the sites near industrial sources as smelters. PMF and EC tracer method gave well correlated (r=0.65) estimates of Secondary OC (SOC). The proportion of coal combustion and SOC were more enhanced along with PM2.5 elevation compared to other sources, suggesting their importances during the pollution events.
اظهر المزيد [+] اقل [-]A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water النص الكامل
2019
Xu, Xiaohui | Zhang, Xiao | Carrillo, Genny | Zhong, Yan | Kan, Haidong | Zhang, Bangning
Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated.In this study, we assessed the carcinogenicity of 1,173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA).We linked the HF chemical data with the agent classification data from the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1,534 chemicals) to evaluate potential carcinogenicity of the chemicals.The Chemical Abstract Service Registry Numbers (CASRNs) for chemicals were used for data linkage. Among 1,173 chemicals, 1,039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals, and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic, and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models.Conclusions Our evaluation suggests that exposure to some chemicals in HF fluids and wastewater may increase cancer risk, and the identified chemicals could be selected as the priority list for drinking water exposure assessment or cancer-related health studies.
اظهر المزيد [+] اقل [-]Urban population exposure to tropospheric ozone: A multi-country forecasting of SOMO35 using artificial neural networks النص الكامل
2019
Antanasijević, Davor | Pocajt, Viktor | Perić-Grujić, Aleksandra | Ristic, Mirjana
Urban population exposure to tropospheric ozone is a serious health concern in Europe countries. Although there are insufficient evidence to derive a level below which ozone has no effect on mortality WHO (World Health Organization) uses SOMO35 (sum of means over 35 ppb) in their health impact assessments. Is this paper, the artificial neural network (ANN) approach was used to forecast SOMO35 at the national level for a set of 24 European countries, mostly EU members. Available ozone precursors’ emissions, population and climate data for the period 2003–2013 were used as inputs. Trend analysis had been performed using the linear regression of SOMO35 over time, and it has demonstrated that majority of the studied countries have a decreasing trend of SOMO35 values.The created models have made majority of predictions (≈60%) with satisfactory accuracy (relative error <20%) on testing, while the best performing model had R² = 0.87 and overall relative error of 33.6%. The domain of applicability of the created models was analyzed using slope/mean ratio derivate from the trend analysis, which was successful in distinguishing countries with high from countries with low prediction errors. The overall relative error was reduced to <14%, after the pool of countries was reduced based on the abovementioned criterion.
اظهر المزيد [+] اقل [-]Persistent halogenated organic pollutants in follicular fluid of women undergoing in vitro fertilization from China: Occurrence, congener profiles, and possible sources النص الكامل
2019
Huang, Yumei | Yan, Muting | Nie, Huayue | Wang, Wenjing | Wang, Jun
Analysis of persistent halogenated organic pollutants (HOPs) in human follicular fluid is important given previous reports of their adverse effects on the reproductivity of women. In the present work, HOPs, including polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), were analyzed in 127 follicular fluid samples collected from patients who were undergoing in vitro fertilization in Central China. The concentrations of ∑₇BDEs (sum of BDE-28, -47, −99, −100, −153, −154, and −183) in follicular fluid ranged from not detected (n.d.) to 110 ng/g lipid weight (lw), with an average of 50 ± 24 ng/g lw. BDE-100 was suggested to be an indicator of BDE congeners in follicular fluid, with the highest concentrations and showing a significantly high correlation (p < 0.01) with ∑₇BDEs. Penta-BDE products were the principal source of PBDEs in follicular fluid samples. The concentrations of ∑₇CBs (CB-28, -52, −101, −118, −138, −153, and −180) in follicular fluids ranged from n.d. to 250 ng/g lw, with an average of 77 ± 69 ng/g lw. CB-28 and CB-52 were considered to be indicator CB congeners, with tri-CBs and tetra-CBs dominating in follicular fluid. No significant correlation was observed between patient age and PBDE or PCB concentrations in follicular fluid, indicating that age was not the controlling factor influencing the bioaccumulation of most HOPs in this study.
اظهر المزيد [+] اقل [-]Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area النص الكامل
2019
Zheng, Xiangbin | Huo, Xia | Zhang, Yu | Wang, Qihua | Zhang, Yuling | Xu, Xijin
Lead (Pb) and polycyclic aromatic hydrocarbon (PAH) exposure is positively associated with cardiovascular disease (CVD), and the possible potential mechanism may be caused by damage to the endothelium by modulation of inflammatory processes. No comprehensive research shows co-exposure of Pb and PAH on cardiovascular endothelial inflammation in electronic waste (e-waste) exposed populations. Given this, the aim of this study is to provide evidence for a relationship between Pb and PAH co-exposure and cardiovascular endothelial inflammation, in an e-waste-exposed population, to delineate the link between a potential mechanism for CVD and environmental exposure. We recruited 203 preschool children (3–7 years) were enrolled from Guiyu (e-waste-exposed group, n = 105) and Haojiang (reference group, n = 98). Blood Pb levels and urinary PAH metabolites were measured. Percentages of T cells, CD4⁺ T cells and CD8⁺ T cells, complete blood counts, endothelial inflammation biomarker (serum S100A8/A9), and other inflammatory biomarkers [serum interleukin (IL)-6, IL-12p70, gamma interferon-inducible protein 10 (IP-10)] levels were evaluated. Blood Pb, total urinary hydroxylated PAH (ΣOHPAH), total hydroxynaphthalene (ΣOHNap) and total hydroxyfluorene (ΣOHFlu) levels, S100A8/A9, IL-6, IL-12p70 and IP-10 concentrations, absolute counts of monocytes, neutrophils, and leukocytes, as well as CD4⁺ T cell percentages were significantly higher in exposed children. Elevated blood Pb, urinary 2-hydroxynaphthalene (2-OHNap) and ΣOHFlu levels were associated with higher levels of IL-6, IL-12p70, IP-10, CD4⁺ T cell percentages, neutrophil and monocyte counts. Mediator models indicated that neutrophils exert the significant mediation effect on the relationship between blood Pb levels and S100A8/A9. IL-6 exerts a significant mediation effect on the relationship between blood Pb levels and IP-10, as well as the relationship between urinary ΣOHFlu levels and IP-10. Our results indicate that children with elevated exposure levels of Pb and PAHs have exacerbated vascular endothelial inflammation, which may indicate future CVD risk in e-waste recycling areas.
اظهر المزيد [+] اقل [-]Linear and nonlinear partition of nonionic organic compounds into resin ADS-21 from water النص الكامل
2019
Zhou, Chenkai | Qi, Long | Lin, Daohui | Yang, Kun
The predominance of natural organic matter (NOM) in nonlinear sorption of nonionic organic compounds (NOCs) is a fundamental behavior that controlling the fate, transfer and bioavailability of NOCs in natural environment. There is a debate, i.e., whether the nonlinear sorption is captured by nonlinear partition mechanism or adsorption mechanism. The debate has been going on for decades because characteristics of nonlinear partition are still unknown due to the lack of an adsorbent that can partition NOCs nonlinearly. We find a resin ADS-21, with specific surface area undetectable (<0.5 m² g⁻¹) but high sorption capacity for NOCs (up to 1000 mg g⁻¹ for phenol as an example), is an ideal adsorbent for examining characteristics of nonlinear partitioning. This resin has nonlinear isotherms for phenols and anilines but linear isotherms for polycyclic aromatic hydrocarbons and nitrobenzenes. The observed positively linear relationship of sorption capacities of NOCs with NOCs solubility in water or octanol, could be one of the characteristics of nonlinear partition. Moreover, competitive sorption and no desorption hysteresis could be observed for the nonlinear partition. Hydrogen-bonding of phenols and anilines with ADS-21 is responsible for nonlinear partition, competitive sorption and isotherm nonlinearity. These evidences would be supportive for understanding nonlinear partition and the nonlinear sorption of NOCs by NOM.
اظهر المزيد [+] اقل [-]Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review النص الكامل
2019
Zhang, Weilan | Zhang, Tongqing | Liang, Yanna
This article gives an overview of nanotechnologies applied in remediation of water contaminated by poly- and perfluoroalkyl substances (PFASs). The use of engineered nanomaterials (ENMs) in physical sorption and photochemical reactions offers a promising solution in PFAS removal because of the high surface area and the associated high reactivities of the ENMs. Modification of carbon nanotubes (CNTs) (e.g., oxidation, applying electrochemical assistance) significantly improves their adsorption rate and capacity for PFASs removal and opens a new door for use of CNTs in environmental remediation. Modified nanosized iron oxides with high adsorption capacity and magnetic property have also been demonstrated to be ideal sorbents for PFASs with great recyclability and thus provide an excellent alternative for PFAS removal under various conditions. Literature shows that PFOA, which is one of the most common PFASs detected at contaminated sites, can be effectively decomposed in the presence of either TiO₂-based, Ga₂O₃-based, or In₂O₃-based nano-photocatalysts under UV irradiation. The decomposition abilities and mechanisms of different nano-photocatalysts are reviewed and compared in this paper. Particularly, the nanosized In₂O₃ photocatalysts have the best potential in PFOA decomposition and the decomposition performance is closely related to the specific surface area and the amount of photogenerated holes on the surfaces of In₂O₃ nanostructures. In addition to detailed review of the published studies, future prospects of using nanotechnology for PFAS remediation are also discussed in this article.
اظهر المزيد [+] اقل [-]Light absorption of organic carbon and its sources at a southeastern U.S. location in summer النص الكامل
2019
Xie, Mingjie | Chen, Xi | Holder, Amara L. | Hays, Michael D. | Lewandowski, Michael | Offenberg, John H. | Kleindienst, Tadeusz E. | Jaoui, Mohammed | Hannigan, Michael P.
Light-absorbing organic carbon (OC), also referred to as “brown carbon” (BrC), has been intensively investigated in atmospheres impacted by biomass burning. However, other BrC sources (e.g., secondary formation in the atmosphere) are rarely studied in ambient aerosols. In the current work, forty-five PM₂.₅ filter samples were collected in Research Triangle Park (RTP), NC, USA from June 1st to July 15th, 2013. The bulk carbonaceous components, including OC, elemental carbon (EC), water soluble OC (WSOC), and an array of organic molecular markers were measured; an ultraviolet/visible spectrometer was used to measure the light absorption of methanol extractable OC and WSOC. The average light absorption per OC and WSOC mass of PM₂.₅ samples in summer RTP are 0.36 ± 0.16 m² gC⁻¹ and 0.29 ± 0.13 m² gC⁻¹, respectively, lower than the ambient aerosol samples impacted by biomass burning and/or fossil fuel combustion (0.7–1.6 m² gC⁻¹) from other places. Less than 1% of the aqueous extracts absorption is attributed to the light-absorbing chromophores (nitroaromatic compounds) identified in this work. To identify the major sources of BrC absorption in RTP in the summer, Positive Matrix Factorization (PMF) was applied to a dataset containing optical properties and chemical compositions of carbonaceous components in PM₂.₅. The results suggest that the formation of biogenic secondary organic aerosol (SOA) containing organosulfates is an important BrC source, contributing up to half of the BrC absorption in RTP during the summertime.
اظهر المزيد [+] اقل [-]Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation النص الكامل
2019
Sun, Yang | Zhao, Lixia | Li, Xiaojing | Hao, Yueqi | Xu, Huijuan | Weng, Liping | Li, Yongtao
Degradation of metolachlor in surface soil is extremely important to its potential mobility and overall persistence. In this study, the effects of earthworms (Eisenia fetida) on the degradation of metolachlor at two concentration levels (5 and 20 mg kg⁻¹) in soil were investigated via the column experiment. The degradation kinetics of metolachlor indicate that addition of earthworms enhances metolachlor degradation significantly (P < 0.05), with the enhanced degradation rate of 30% and 63% in the low and high concentration treatments at the 15th day, respectively. Fungi rather than bacteria are primarily responsible for metolachlor degradation in soil, and earthworms stimulate metolachlor degradation mainly by stimulating the metolachlor-degrading functional microorganisms and improving fungal community structure. Earthworms prefer to promote the possible fungal degraders like order Sordariales, Microascales, Hypocreales and Mortierellales and the possible bacteria genus Rubritalea and strengthen the relationships between these primary fungi. Two metabolites metolachlor oxanilic (MOXA) and moetolachlor ethanesulfonic acid (MESA) are detected in soil and earthworms in the high concentration treatments. Earthworms stimulate the formation of MOXA and yet inhibit the formation of MESA in soil. Another metabolite metolachlor-2-hydroxy (M2H) is also detected in earthworms, which is reported firstly. The study provides an important information for the remediation of metolachlor-polluted soil.
اظهر المزيد [+] اقل [-]Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor النص الكامل
2019
Xie, Jingqian | Zhao, Lu | Liu, Kai | Liu, Weiping
Harmful algal blooms have emerged as a worldwide issue. After concentrations of herbicides entering water, herbicides in water may pose ecological effects on them. The present study investigates the toxicity and environmental behavior of the herbicides, napropamide and acetochlor as enantiomers and as racemates on Microcystis aeruginosa which is the main specie known to produce hepatotoxins. S-napropamide/acetochlor are degraded faster than their corresponding isomer R-napropamide/acetochlor, with the latter more prone to accumulate in algal cells. Moreover, all the enantiomers did not undergo measurable racemization in the medium and algal cells. S-napropamide/acetochlor exhibited much higher toxicity than R-napropamide/acetochlor, with the S-enantiomer inducing a much greater production of antioxidant defense enzymes (superoxide dismutase (SOD) and malondialdehyde (MDA)) and microcystins (MC). SOD and MC increased after treatment with the herbicides and these increases were dependent on the exposure time, whereas MDA showed no apparent change. The information provided in this work will be useful for understanding the toxicity mechanism and environmental behaviors of different amide herbicides (napropamide and acetochlor) in aquatic environments at the enantiomeric level. Additionally, analysis of chiral herbicides in aquatic system needs more attention to aide in the environmental assessment of chiral herbicides.
اظهر المزيد [+] اقل [-]