خيارات البحث
النتائج 291 - 300 من 4,896
Urban vegetation and particle air pollution: Experimental campaigns in a traffic hotspot
2019
Gómez-Moreno, F.J. | Artíñano, B. | Ramiro, EDíaz | Barreiro, M. | Núñez, L. | Coz, E. | Dimitroulopoulou, C. | Vardoulakis, S. | Yagüe, C. | Maqueda, G. | Sastre, M. | Román-Cascón, C. | Santamaría, J.M. | Borge, R.
This work presents the main results of two experimental campaigns carried out in summer and winter seasons in a complex pollution hotspot near a large park, El Retiro, in Madrid (Spain). These campaigns were aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas with high pollution values to obtain data to validate models on the effect of urban trees on particulate matter concentrations.Two different measuring approaches have been used. The first one was static, with instruments continuously characterizing the meteorological variables and the particulate matter concentration outside and inside the park. During the summer campaign, the particulate matter concentration was clearly influenced by a Saharan dust outbreak during the period 23 June to 10 July 2016, when most of the particulate matter was in the fraction PM₂.₅₋₁₀. During the winter campaign, the mass concentrations were related to the meteorological conditions and the high atmospheric stability.The second approach was a dynamic case with mobile measurements by portable instruments. During the summer campaign, a DustTrak instrument was used to measure PM₁₀ and PM₂.₅ in different transects close to and inside the park at different distances from the traffic lane. It was observed a decrease in the concentrations up to 25% at 20 m and 50% at 200 m. High PM₁₀ values were linked to dust resuspension caused by recreational activities and to a Saharan dust outbreak. The highest PM values were measured at the Independencia square, an area with many bus stops and high traffic density. During the winter campaign, three microaethalometers were used for Black Carbon measurement. Both pollutants also showed a reduction in their concentrations when moving towards inside the park. For PM₁₀ and PM₂.₅, reductions up to 50% were observed, while for BC this reduction was smaller, about 20%.
اظهر المزيد [+] اقل [-]The effects of biodegradation on the characteristics and disinfection by-products formation of soluble microbial products chemical fractions
2019
Wu, Meirou | Liang, Yongmei | Zhang, Yuguang | Xu, Haixing | Liu, Wei
Soluble microbial products (SMPs) discharged into rivers from sewage treatment plants may increase the health risk for downstream drinking water by acting as a precursor of DBPs. Biotransformation or biodegradation could alter the characteristics of SMPs and affect the subsequent formation of DBPs. This study observed the relative contribution of chemical fractions in SMPs and explored the biodegradation of each fraction and their effect on disinfection by-products (DBPs) formation in surface water. The hydrophilic acid (HPIA) and hydrophobic acid (HPOA) constituted the major portion of the SMPs, which were dominated by fulvic acid and humic acids. The transphilic acid (TPIA) and hydrophobic bases (HPOB) were relatively minor but it contained a relative substantial portion of protein-like materials in SMPs. TPIA and HPOB produced insignificant amounts of DBP corresponding to 13% and 14% in the original samples, but they were collectively responsible for 50% of the DBPs yield. Much larger amounts of hydrophobic fractions were utilized than hydrophilic fractions after biodegradation. The increase in SUVA values indicating aromatic structures, except for HPOA fraction, was observed after biodegradation. The protein-like materials in both the HPOA and HPIA fractions and polycarboxylate-type humic acid in the HPIA fraction decreased but the enrichment of HPOA (MW > 100 kDa) and TPIA (MW < 1 kDa) was observed after biodegradation. The production of = C–H in HPIA fraction and the appearance of double peak at 1100 cm⁻¹ in TPIA and HPOB fractions occurred after biodegradation. In overall level, microorganisms effectively utilized DBP precursors from HPIA, HPOA and HPOB fractions but increased the DBPs precursors from the TPIA fraction. TPIA and HPOB fractions had higher DBP yield with chlorine but the DBPs yield of HPIA and HPOA changed little after biodegradation.
اظهر المزيد [+] اقل [-]Species-specific debromination of polybromodiphenyl ethers determined by deiodinase activity in fish
2019
Luo, Yuan-Lai | Luo, Xiao-Jun | Ye, Mei-Xia | Lin, Lan | Zeng, Yan-Hong | Mai, Bi-Xian
A combination of previous studies and the present study indicated species-specific debromination of polybromodiphenyl ethers (PBDEs) in teleost fish. Three situations of debromination were found, namely rapid debromination represented by debromination of BDE 99 to BDE 47 observed in common carp, tilapia, crucian carp, and oscar fish; slow debromination represented by debromination of BDE 99 to BDE 49 observed in the abovementioned fish and rainbow trout, salmon, and snakehead; and no or minor debromination observed in catfish. The results of experiments on cofactors, inhibitors, and substrate competitors indicated that activities of outer ring deiodinase of 3, 3′, 5′-triiodothyronine (type I deiodinase), which cannot be inhibited by 6-propyl-2-thiouracil, were responsible for the rapid debromination, and the outer ring deiodinase of thyroxine (type II deiodinase) regulated the slow debromination. The debromination of BDE 99 to BDE 49 was more common, but occurred at a much lower rate (approximately 100 times lower) than the debromination of BDE 99 to BDE 47. This was because the activity of type II deiodinase was nearly two orders of magnitude lower than that of type I deiodinase in the fish species studied. Further studies on debromination of PBDEs and properties of deiodinase in more species are needed to confirm the hypothesis.
اظهر المزيد [+] اقل [-]Chronic exposure to dietary selenomethionine dysregulates the genes involved in serotonergic neurotransmission and alters social and antipredator behaviours in zebrafish (Danio rerio)
2019
Attaran, Anoosha | Salahinejad, Arash | Crane, Adam L. | Niyogi, Som | Chivers, Douglas P.
Selenium (Se) is a metalloid of potential interest from both a toxicological and nutritional perspective, having a range of safe intake. The adverse neuro-behavioural effects of Se have been investigated in both humans and fishes, but little is known about its effects on social behaviours or the serotonergic signaling pathway in the brain. In the present study, we investigated the effects of chorionic dietary exposure to Se (as selenomethionine) at different concentrations (control, 2.1, 11.6 or 31.5 μg/g dry wt.) on antipredator avoidance, shoaling behaviour, and social group preferences in adult zebrafish (Danio rerio). In addition, we also measured the expression of important genes in the serotonergic pathway that influence social behaviours. After 60 days of exposure, the highest dose (31.5 μg/g dry wt.) caused the highest level of baseline fear behaviour, with fish swimming lower in the water column and in tighter shoals compared to fish in the other treatments. With high levels of baseline fear, these fish did not significantly intensify fear behaviours in response to predation risk in the form of exposure to chemical alarm cues. When individual fish were given an opportunity to shoal with groups of differing sizes (3 vs. 4 individuals), fish exposed to the high dose spent less time with groups in general, and only control fish showed a significant preference for the larger group. In the zebrafish brain, we found significant upregulation in the mRNA expression of serotonin receptors (htr1aa and htr1b), a transporter (slc6a4a), and tryptophan hydroxylase-2 (tph2), whereas there was a downregulation of the monoamine oxidase (mao) gene. The results of this study suggest that disruption of serotonergic neurotransmission might have been responsible for Se-induced impairment of antipredator and social behaviour in zebrafish.
اظهر المزيد [+] اقل [-]Mangrove forests as traps for marine litter
2019
Martin, Cecilia | Almahasheer, Hanan | Duarte, Carlos M.
To verify weather mangroves act as sinks for marine litter, we surveyed through visual census 20 forests along the Red Sea and the Arabian Gulf, both in inhabited and remote locations. Anthropogenic debris items were counted and classified along transects, and the influence of main drivers of distribution were considered (i.e. land-based and ocean-based sources, density of the forest and properties of the object). We confirmed that distance to major maritime traffic routes significantly affects the density of anthropogenic debris in Red Sea mangrove forests, while this was independent of land-based activities. This suggests ocean-based activities combined with surface currents as major drivers of litter in this basin. Additionally, litter was more abundant where the mangrove density was higher, and object distribution through the mangrove stand often depended on their shape and dimension. We particularly show that pneumatophores act as a sieve retaining large plastic objects, leading to higher plastic mass estimates in mangroves compared to those of beaches previously surveyed in the Red Sea.
اظهر المزيد [+] اقل [-]Occurrence of enterococci harbouring clinically important antibiotic resistance genes in the aquatic environment in Gauteng, South Africa
2019
Hamiwe, Thabo | Kock, Marleen M. | Magwira, Cliff A. | Antiabong, John F. | Ehlers, Marthie M.
The development of antibiotic resistance and dissemination of its determinants is an emerging public health problem as it compromises treatment options of infections that were, until recently, treatable. Investigation of outbreaks of vancomycin resistant enterococci (VRE) suggests that the environment serves as a significant reservoir for antibiotic resistance genes (ARGs). However, there is a paucity of data regarding the presence of ARGs in the water sources in South Africa. In this study, water samples collected from wastewater treatment plants (WWTPs), surface water and hospital sewage were screened for enterococci harbouring genes conferring resistance to four classes of antibiotics. Enterococci isolates harbouring ARGs were detected in raw influent and treated wastewater discharge from WWTPs and hospital sewage water. Plasmid and transposon encoded ermB (macrolide), tetM and tetL (tetracycline) as well as aph(3’)-IIIa (aminoglycosides) genes were frequently detected among the isolates, especially in E. faecalis. The presence of enterococci harbouring ARGs in the treated wastewater suggest that ARGs are discharged into the environment where their proliferation could be perpetuated. Among the enterococci clonal complexes (CCs) recovered from wastewater were E. faecium CC17 (ST18), which is frequently associated with hospital outbreaks and a novel E. faecalis sequence type (ST), ST780.
اظهر المزيد [+] اقل [-]Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation
2019
Liu, Jian-li | Yao, Jun | Wang, Fei | Min, Ning | Gu, Ji-hai | Li, Zi-fu | Sunahara, Geoffrey | Duran, Robert | Solevic-Knudsen, Tatjana | Hudson-Edwards, K. A. (Karen A.) | Alakangas, Lena
Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
اظهر المزيد [+] اقل [-]Double-edged effects of noncoding RNAs in responses to environmental genotoxic insults: Perspectives with regards to molecule-ecology network
2019
Huang, Ruixue | Zhou, PingKun
Numerous recent studies have underlined the crucial players of noncoding RNAs (ncRNAs), i.e., microRNAs(miRNAs), long noncoding RNAs(lncRNAs) and circle RNAs(circRNAs) participating in genotoxic responses induced by a wide variety of environmental genotoxicants consistently. Genotoxic-derived ncRNAs provide us a new epigenetic molecular–ecological network (MEN) insights into the underlying mechanisms regarding genotoxicant exposure and genotoxic effects, which can modify ncRNAs to render them “genotoxic” and inheritable, thus potentially leading to disease risk via epigenetic changes. In fact, the spatial structures of ncRNAs, particularly of secondary and three-dimensional structures, diverse environmental genotoxicants as well as RNA splicing and editing forma dynamic pool of ncRNAs, which constructs a MEN in cells together with their enormous targets and interactions, making biological functions more complicated. We nonetheless suggest that ncRNAs have both beneficial(positive) and harmful(negative) effects, i.e., are “double-edged” in regulating genotoxicant toxic responses. Understanding the “double-edged” effects of ncRNAs is of crucial importance for our further comprehension of the pathogenesis of human diseases induced by environmental toxicants and for the construction of novel prevention and therapy targets. Furthermore, the MEN formed by ncRNAs and their interactions each other as well as downstream targets in the cells is important for considering the active relationships between external agents (environmental toxicants) and inherent genomic ncRNAs, in terms of suppression or promotion (down- or upregulation), and engineered ncRNA therapies can suppress or promote the expression of inherent genomic ncRNAs that are targets of environmental toxicants. Moreover, the MEN would be expected to be would be applied to the mechanistic explanation and risk assessment at whole scene level in environmental genotoxicant exposure. As molecular biology evolves rapidly, the proposed MEN perspective will provide a clearer or more comprehensive holistic view.
اظهر المزيد [+] اقل [-]Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety
2019
Käffer, Márcia I. | Domingos, Marisa | Lieske, Isadora | Vargas, Vera M.F.
Air pollution has been identified as a major cause of environmental and human health damage. O₃ is an oxidative pollutant that causes leaf symptoms in sensitive plants. This study aims to adjust a multilinear model for the monitoring of O₃ in subtropical climatic conditions by associating O₃ concentrations with measurements of morphological leaf traits in tobacco plants and different environmental variables. The plants were distributed into five areas (residential, urban or industrial) in the southern region of Brazil and exposed during 14 periods, of 14 days each, during the years of 2014 and 2015. The environmental variables and leaf traits during the exposure periods were described by mean, median, standard deviation and minimum and maximum values. Spearman correlation and multiple linear regression analyses were applied on data from exposure periods. Leaf injury index, leaf area, leaf dry mass, temperature, relative humidity, global solar radiation and accumulated rainfall were used in the regression analyses to select the best models for predicting O₃ concentrations. Leaf injury characteristically caused by O₃ was verified in all areas and periods of plant exposure. Higher values of leaf injury (24.5% and 27.7%) were registered in the 13th and 12th exposure periods during spring and in areas influenced by urban and industrial clutches. The VPD, temperature, global solar radiation and O₃ were correlated to leaf injury. Environmental variables [leaf area, leaf dry mass, global solar radiation and accumulated rainfall] and primarily the VPD were fundamental to improve the adjustments done in the bioindicator model (R² ≥ 0.73). Our research shows that biomonitoring employing the tobacco “Bel-W3” can be improved by measuring morphological leaf traits and meteorological parameters. Additionally, O₃ fumigation experiment should be performed with biomonitoring as conducted in this study, which are useful in understanding the role of other environmental factors.
اظهر المزيد [+] اقل [-]Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation
2019
Huang, Zhi-Wei | Li, Zi-Jie | Zheng, Li-Rong | Wu, Wang-Suo | Chai, Zhi-Fang | Shi, Wei-Qun
One of the most important reasons for the controversy over the development of nuclear energy is the proper disposal of spent fuel. Separation of actinide and lanthanide ions is an important part of safe long-term storage of radioactive waste. Herein, a three-dimensional (3D) graphene-based macrostructure (GOCS) was utilized to remove actinide thorium and lanthanide europium ions from aqueous solutions. The adsorption of Eu(III) and Th(IV) on the GOCS was evaluated as a function of adsorption time, solution pH, initial ion concentrations, and ionic strength. The experimentally determined maximum adsorption capacities of this GOCS for Eu(III) (pH 6.0) and Th(IV) (pH 3.0) are as high as 150 and 220 mg/g, respectively. By using Fourier transformation infrared (FT-IR), X-ray photoelectron (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy, we concluded that the Eu(III) and Th(IV) adsorption was predominantly attributed to the inner-sphere coordination with various oxygen- and nitrogen-containing functional groups on GOCS surfaces. Our selective adsorption results demonstrate that the actinide and lanthanide ions can be effectively separated from transition metal ions. This study provides new clues to the overall recycling of actinide and lanthanide ions in radioactive environmental pollution treatments.
اظهر المزيد [+] اقل [-]