خيارات البحث
النتائج 291 - 300 من 680
Advancements in Machine Learning and Deep Learning Techniques for Crop Yield Prediction: A Comprehensive Review النص الكامل
2024
V. Ramesh and P. Kumaresan
Agriculture is the crucial pillar and basic building block of our nation. Agriculture plays a key role as the major source of revenue for our nation. Farming is the primary financial source of India. Abrupt environmental changes affect crop yield prediction. Unpredictable climate changes, lack of water resources, deficiency of nutrients, depletion of soil fertility, unbalanced irrigation systems, and conventional farming techniques are the major causes of crop yield prediction. Today, AI, the use of machine learning, and deep learning techniques provide an achievable solution to improve crop yields. The key intent of the survey is to accurately predict and improve crop yield by combining agricultural statistics with machine learning and deep learning models. To accomplish this, we have surveyed the optimization algorithms implemented in conjunction with the Random Forest and Cat Boost models. A survey made across multiple databases to determine the effectiveness of crop yield prediction and analysis was performed on the included articles. The survey results show that a hybrid CNN DNN and RNN model with optimization algorithms outperforms the other existing traditional models.
اظهر المزيد [+] اقل [-]Potential Low-cost Treatment of Tannery Effluents from Industry by Adsorption on Activated Charcoal Derived from Olive Pomace النص الكامل
2024
I. Alouiz, M. Benhadj, D. Elmontassir, M. Sennoune, M.Y. Amarouch and D. Mazouzi
Tannery wastewater contains a significant amount of chemical compounds, including toxic substances. Due to the toxicity and negative environmental effects of these tannery effluents, mandatory treatment is necessary. The main objective of this study was to treat effluent from an artisanal tannery in the city of Fez (Morocco) using the adsorption process with activated charcoal derived from olive pomace. The physicochemical characterization of tanning water included several parameters, such as chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), suspended solids (SS), sulfate ions (SO42-), nitrate, and chromium Cr(VI). The analyses show that the adsorption process reduced nitrate by 57.54%, sulfate by 94.08%, TKN by 74.84%, COD by 68.18%, Cr by 91.27%, and Cr (VI) by 89.78%. The activated charcoal was characterized before and after tannery effluent treatment using various techniques, including FT-IR, SEM, and EDX. From the above, it can be inferred that using activated carbon made from olive pomace has the potential to reduce tannery effluent pollution parameters. This innovative approach demonstrates that competitive results can be achieved without sacrificing economic viability, thereby promoting sustainable practices in the treatment of industrial liquid waste and wastewater treatment plants.
اظهر المزيد [+] اقل [-]Evaluating Sustainability: A Comparison of Carbon Footprint Metrics Evaluation Criteria النص الكامل
2024
Mahima Chaurasia, Sanjeev Kumar Srivastava and Suraj Prakash Yadav
The two biggest environmental issues the world is currently dealing with are global warming and climate change. Minimizing energy consumption will help to cut down on greenhouse gas emissions, which is our responsibility. Companies choose ‘Carbon Footprint’ as a tool to calculate greenhouse gas emissions to show the impact of their activities on the environment. The techniques and procedures used in the analysis of carbon footprints are the primary focus of this study. Several criteria for evaluating carbon footprints were compared to one another to uncover parallels, variances, and deficiencies. Carbon footprints of companies and items were analyzed, and their objectives, ideas, topics of inquiry, calculation techniques, data choices, and additional elements were investigated. Standards for both organizations (ISO14064 and the GHG protocol) and products were compared and contrasted to arrive at accurate carbon footprint estimates. The most important aspects of a carbon footprint and assessment criterion are the research of GHG, system settings, measurement and carbon footprint, date, and treatment of individual emissions. Especially true for commercial enterprises and consumer goods. Guidelines have been produced for these challenges based on valuation criteria that have been used up to this point; nonetheless, they should be enhanced. This study highlights the need to formulate policies to reduce greenhouse gas emissions.
اظهر المزيد [+] اقل [-]Climate Change Effects on Crop Area Dynamics in the Cachar District of Assam, India: An Empirical Study النص الكامل
2024
Mashud Ahmed, Md Kamrul Islam and Samar Das
Climate change is a worldwide phenomenon that significantly impacts the area, production, and yield of crops. Changes in climate conditions have diverse effects on farming globally. For instance, an increase in temperature can make specific crops more vulnerable to pests. Similarly, a decrease in rainfall reduces water availability, affecting both irrigated and rainfed farming practices. This study aims to investigate climate change effects on crop area dynamics in the Cachar district of Assam, India, for a period spanning from 1981 to 2017. The time series ARDL (Autoregressive Distributed Lag) model is employed to analyze the relationship between climate factors and areas under different crops. As a pre-requisite condition for ARDL, the Augmented Dickey-Fuller (ADF) test is employed to check the order of integration of area under selected crops. The research reveals that the annual average temperature negatively affects the area dedicated to chickpeas, while annual average rainfall negatively impacts the areas allocated to rice and chickpeas. Conversely, annual average relative humidity has a significant positive impact on the area of these crops in the study region. Policymakers may consider strategies and policies for agriculture by encouraging the cultivation of crop varieties that are more resilient to climate change.
اظهر المزيد [+] اقل [-]Optimization and Thermodynamic Analysis of CO2 Refrigeration Cycle for Energy Efficiency and Environmental Control النص الكامل
2024
Manish Hassani and Kamlesh Purohit
Supermarket applications are significant contributors to greenhouse gas emissions, necessitating efforts to reduce carbon footprints in the food retail sector. Carbon dioxide (R744) is recognized as a viable long-term refrigerant choice due to its favorable properties, including low Global Warming Potential, non-toxicity, non-flammability, affordability, and widespread availability. However, enhancing the energy efficiency of pure CO2 systems in basic architecture units, particularly in warm regions like India, remains a challenge. To address this, modern refrigeration systems must prioritize low energy consumption and high coefficient of performance (COP) while meeting environmental standards. This study investigates different operating conditions to determine the optimal parameter range for maximizing COP and improving the efficiency of conventional CO2 refrigeration configurations. It examines both subcritical and transcritical refrigeration cycles under varying parameters, emphasizing the importance of understanding COP’s relationship with factors such as subcooling, superheating, ambient temperature, and evaporator temperature. The study advises against superheating in CO2 systems but highlights the substantial COP increase with higher degrees of subcooling, leading to enhanced system performance. Additionally, it provides a comprehensive theoretical comparison between advanced pure CO2 supermarket applications and commonly used hydrofluorocarbons-based systems, offering insights into energy efficiency and environmental impacts for informed decision-making in the industry.
اظهر المزيد [+] اقل [-]Assessment of Physicochemical Properties of Water and Public Perceptions of Water Quality in Tasik Chini, Pahang, Malaysia النص الكامل
2024
M. S. Islam, T. M. Ekhwan, F. N. Rasli and C. T. Goh
The study was conducted to evaluate the physicochemical parameters of water and assess the public perception of the water quality status in the Tasik Chini watershed based on a community survey. The water sample was analyzed based on standard methods and categorized according to WQI (Water Quality Index). Multivariate statistical analysis was adopted to find spatial variations in water quality, determining the pollution level and sources of contamination. The study results were compared with NWQS (National Water Quality Standard for Malaysia). The results showed that the value of dissolved oxygen (DO) was low (4.68 mg.L-1), while the level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) was found to be high, 2.92 mg.L-1, 26.10 mg.L-1 and 22.93 mg.L-1 respectively. High turbidity was recorded in a mining area in the rainy season (35.76 NTU). The DOE-WQI value categorized the lake under class II and class III. The Principal Component Analysis (PCA) revealed that the major sources of contamination were due to anthropogenic activities, especially settlement, mining, agriculture, and illegal activities. Overall, Tasik Chini’s water quality status was classified as slightly polluted to highly polluted based on hierarchical cluster analysis (CA) results. The survey showed that 55% of the local community reported that the water quality was poor. The knowledge and attitude level of the local people was medium category, while community practice was low. The Pearson correlation coefficient test showed a strong significant relationship at 0.01 level between knowledge and attitude and knowledge and practices. The scientific findings with public perceptions might be useful for policymakers and the general public to improve the management system for a desirable future.
اظهر المزيد [+] اقل [-]Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil النص الكامل
2024
S. Dash and M. Kujur
The research was carried out to determine the potential effect of microbiota, organic carbon, percentage of moisture content, and microbial biomass concentration as an evaluator of variation in basal soil respiration rate. Relative distribution and composition of the microbial population were estimated from six different chronosequence manganese mine spoil (MBO0, MBO2, MBO4, MBO6, MBO8, MBO10) and forest soil (FS). The variation was seen in moisture content (6.494±0.210-11.535±0.072)%, organic carbon (0.126±0.001- 3.469± 0.099)%, MB-C (5.519±1.371- 646.969± 11.428) μg.g-1 of soil. A positive correlation was shown between OC with MB-C (r = 0.938; p< 0.01) and moisture content (MC) (r = 0.962; p< 0.01). Variation in the basal soil respiration (BSR) and microbial metabolic quotients (MMQ) was shown to range between 0.352 ± 0.007- 0.958 ±0.014μg CO2-C.g-1 and 6.5× 10-3 - 1.481×10-3 μg CO2-C.g-1 microbial-C.h-1 with BSR: OC from (2.793-0.276)% respectively. This result shows that there is a gradual increase in OC, MC, MB-C, and BSR across seven different sites due to progressive enhancement in soil fertility that leads to the initialization of succession. Stepwise multiple regression analysis further confirms the degree of variability added by microbial biomass C, moisture content, organic carbon, and microbial population on basal soil respiration in microbes. Principal component analysis enables the differentiation of seven different soil profiles into independent clusters based on cumulative variance given by physico-chemical and microbial attributes that indicate the level of degradation of land and act as an index to restore soil fertility.
اظهر المزيد [+] اقل [-]Characterization of the Liquid Fuel Produced from Catalytic Depolymerization of Polymeric Waste Using Batch Reactor النص الكامل
2024
O. L. Rominiyi, M. A. Akintunde, E. I Bello, L. Lajide, O. M. Ikumapayi, O. T. Laseinde and B. A. Adaramola
The high rate of generation of plastic waste in the country and the fact that all other means of Municipal Plastic Waste (MPW) management techniques had failed leading to the requirement of efficient and alternative disposal technique-depolymerization. The technique involves heating the polymeric waste at an elevated temperature in an inert environment to produce condensable, non-condensable, hydrocarbon and biochar. The plastic waste was collected at the Ilokun dumpsite in Ado-Ekiti, southwest Nigeria. Each component of the waste samples was depolymerized in a batch reactor without the use of a catalyst and with the addition of 10 g of activated carbon (AC) and calcium oxide (CaO) as catalysts. The liquid fuels which were produced between the temperature range of 219 and 232 were blended with standard fuel. Fuel samples with conventional diesel and depolymerized plastic diesel were characterized based on ASTM standards. The results of the proximate and ultimate analysis indicated that percentage moisture content ranges from 0.00-0.18%, volatile matter ranges between 96.66-99.75% and percentage ash content ranges from 0.13-3.03%. Fixed carbon ranges from 0.004-0.31% while the Gross Heating Value (GHV) ranges from 42.66-45.87 MJ/kg. The CHONS analyzer indicated the percentage of carbon, hydrogen, oxygen, nitrogen, and sulfur content range 81.64-85.51%, 12-31-18.04%, 0.00-1.51%, 0.00-0.73%, and 0.10- 0.97% respectively. The results of the physiochemical properties of the samples show that the density, API gravity, Kinematic viscosity and Flash point vary from 0.76-0.83 (g/cm3), 38.98-54.68, 17-2.80 (cm2/s) and 50.0-70.0 (°C) respectively while Cloud point, Pour point, Fire point and Cetane index range from -20-15.0 (°C), -23-7 (°C), 61.0-79.0 (°C) and 38.50-47.0. The pH values of the liquid fuel samples vary from 6.60-3.30. The overall results of the characterization indicated the fuel samples have proximity to the properties of the conventional diesel following the ASTM D975, ASTM D4737, ASTM D1298, ASTM D445, ASTM D2709, and ASTM D482 standards. The depolymerized polymeric waste is sustainable, with a low cost of production. Hence a good substitute as an alternative fuel and means of wealth creation from waste.
اظهر المزيد [+] اقل [-]The Waste Management System in the Parking and Traders Arrangement in the Borobudur Temple Area, Central Java, Indonesia النص الكامل
2024
S. Isworo, E. Jasmiene and P. S. Oetari
The Indonesian government continues to accelerate the resolution of all problems related to the planning, infrastructure development, and arrangement of tourist visits, including the arrangement of parking spaces and commercial areas in the Borobudur temple area. The purpose of this study is to develop a waste management system in the parking and commercial areas of Kujon as an alternative to structuring the Borobudur temple area. The research method is a descriptive-qualitative observational approach. Surface water and groundwater examinations are carried out in laboratories and compared with quality criteria determined by the Indonesian government. Toxic and hazardous waste is stored in temporary facilities until it is collected by a company licensed by the Indonesian environmental ministry. The Shannon-Wiener Plankton and Benthos Diversity Index measures the diversity of organisms in a community. The study’s findings highlight the need to establish a waste processing facility based on the reduction, reuse, and recycling principles. Waste will be collected at a certain site and stored temporarily in line with the technical instructions for the Minister of Environment and Forestry’s Regulation. The findings of surface water and groundwater studies demonstrate that all measured parameters continue to meet the Indonesian government’s quality thresholds. Plankton Bioindicator Measurements: Plankton diversity index values range from 1.040 to 1.943, indicating moderate pollution, while benthos values range from 0.811 to 0.918, indicating weakly to moderately contaminated conditions. Sustainable environmental management is critical and should serve as a baseline for environmental quality in the activity area.
اظهر المزيد [+] اقل [-]Hepatotoxic Effects of Gaseous Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂), and Their Mixture on Sea Bass (Centropristis striata): Hematological, Biochemical and Genotoxic Studies النص الكامل
2024
N. Gandhi, Y. Rama Govinda Reddy and Ch. Vijaya
This study meticulously explores the intricate hepatotoxic effects stemming from acute exposure to gaseous sulfur dioxide (SO2), nitrogen dioxide (NO2), and their amalgamation on sea bass (Centropristis striata). Employing a comprehensive approach involving hematological, cytotoxic, and histochemical analyses, the research provides crucial insights into the potential adverse impacts of these pollutants on fish health. The examination specifically focuses on the effects of SO2+NO2 on hematological, histochemical, and serum biochemical parameters in Centropristis striata. Treatment groups, subjected to LC30, LC50, and LC90 acute exposure of gaseous SO2, NO2, and SO2+NO2, alongside a control group, underwent evaluation of parameters such as red and white blood cells, hemoglobin, hematocrit, mean corpuscular hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin concentration, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, acid phosphatase, lactate dehydrogenase, total protein, albumin, serum creatinine, and blood urea. At the 96th hour, RBC values decreased, and WBC values increased in all experimental conditions compared to the control group (p>0.05). MCV and MCH increased with the concentration of gaseous pollutants and exposure time (p>0.05). Hematological parameter variations underscore disruptions in blood composition and immune responses. Simultaneously, alterations in serum biochemical parameters suggest potential impairments in liver and kidney functions, along with disturbances in lipid metabolism. Significant declines in albumin levels, indicating potential liver dysfunction or inflammation due to SO2 and NO2 exposures, were observed at all experimental conditions, while decreased globulin levels suggest immunosuppressive effects from combined pollutants. A substantial increase in the albumin/globulin ratio further signals an imbalance indicative of potential liver dysfunction or inflammation. Varied responses in liver enzyme levels (SGPT/ALT, SGOT/AST, ALP) underscore potential liver damage or injury (p< 0.05). These findings deepen our understanding of environmental impacts on aquatic ecosystems, emphasizing the need for ongoing efforts to ensure the health and sustainability of fish populations in polluted environments.
اظهر المزيد [+] اقل [-]