خيارات البحث
النتائج 291 - 300 من 506
Evaluation of the Contaminated Area Using an Integrated Multi-Attribute Decision-Making Method
2024
A. Mohamed Nusaf and R. Kumaravel
Air pollution affects public health and the environment, creating great concern in developed and developing countries. In India, there are numerous reasons for air pollution, and festivals like Diwali also contribute to air contamination. Determining the polluted region using several air contaminants is significant and should be analyzed carefully. This study aims to analyze the air quality in Tamil Nadu, India, during the Diwali festival from 2019 to 2021, based on multiple air pollutants. The study models the impact of air pollution as a Multi-Attribute Decision-Making (MADM) problem. It introduces a hybrid approach, namely the Analytical Hierarchy Process-Entropy-VlseKriterijumska Optimizacija I Kompromisno Resenje (AHP-Entropy-VIKOR) model, to analyze and rank the areas based on the quality of air. A combined approach of AHP and entropy is employed to determine the weights of multiple air pollutants. The VIKOR approach ranks the areas and identifies the areas with the worst air quality during the festival. The proposed model is validated by performing the Spearman’s rank correlation with two existing MADM methods: Combinative Distance Based Assessment (CODAS) and Weighted Aggregates Sum Product Assessment (WASPAS). Sensitivity analysis is carried out to assess the effects of the priority weights and the dependency of the pollutants in ranking the regions. The highest air pollution level during the festival was seen in Cellisini Colony (2019), Rayapuram (2020), T. Nagar and Triplicane (2021) in their respective year. The results demonstrate the consistency and efficiency of the proposed approach.
اظهر المزيد [+] اقل [-]Application of Arc-SWAT Model for Water Budgeting and Water Resource Planning at the Yeralwadi Catchment of Khatav, India
2024
R. S. Sabale, S. S. Bobade, B. Venkatesh and M. K. Jose
Every facet of life, including human habitation, economic development, food security, etc., depends on water as a valuable resource. Due to the burgeoning population and rapid urbanization, water availability needs to be simulated and measured using hydrologic models and trustworthy data. To fulfill this aim, the SWAT model was processed in this work. The SWAT model was formulated to estimate the hydrological parameters of Yeralwadi using meteorological data from IMD (India Meteorological Department) for the period 1995-2020. The observed discharge data was collected from the HDUG Nasik group and used in the calibration and validation of the Model. The SWAT model was corrected & validated through the SUFI-II algorithm in SWAT-CUP to get a better result. The model’s sensitivity is checked by using statistical parameters like Nash-Sutcliffe Efficiency (NSE) and a coefficient of determination (R2). NSE values were 0.72 and 0.80 in calibration and validation, and R2 were 0.80 & 0.76 in calibration and validation, respectively, indicating the acceptance of the model. Results show that 40.6% of the total yearly precipitation was lost by evapotranspiration. The estimated total discharge from the Yeralwadi catchment was 55.6%, out of which 41.2% was surface runoff and 14.4% was baseflow. The other 17.8% was made up of percolation into confined and unconfined aquifers, which served as soil and groundwater storages. The surface runoff is influenced by Curve number (CnII), SOL_AWC, ESCO, and base flow was influenced by ALPHA-BF and GW_REVAP. This study will be useful to water managers and researchers to develop sustainable water resource management and to alleviate the water scarcity issues in the study basin.
اظهر المزيد [+] اقل [-]Selection of White-Rot Fungi for Decolorization of Palm Oil Mill Effluent and Evaluation of Biodegradation and Biosorption Processes
2024
Sanhathai Ridtibud, Nuttika Suwannasai, Apichaya Sawasdee, Verawat Champreda, Cherdchai Phosri, Sarper Sarp, Nipon Pisutpaisal and Siriorn Boonyawanich
Ten species of white-rot fungi were evaluated for their ability to decolorization of palm oil mill effluent. The highest decolorization efficiency was found with Trametes elegans (PP17-06), followed by Ganoderma sp.2 (PW17-06) and Ganoderma sp.2 (PW17-177), respectively. T. elegans was further evaluated for the long-term performance of decolorization for 24 d. The optimal retention time for the decolorization was 8 d, with a color removal efficiency of 47.7%. Beyond 18 d of incubation, decolorization efficiency was reduced due to the autolysis of enzymes. During the biodegradation process, manganese peroxidase enzyme activities reached a maximum of 36.03 U.L−1. However, no significant laccase and lignin peroxidase activities were observed. T. elegans was also assessed for decolorization performance through biosorption on mycelial biomass. The synthesis of the enzyme was prevented by exposing the mycelium to HgCl2. Within an optimal contact time of 2 d, decolorization efficiency reached 12.5% with ADMI reduction from 4259.0 (±20.1) ADMI to 3727 (±104.04) ADMI. Results indicate that the adsorption capacity was reached at this time, and no significant color removal can be achieved by biomass. Results obtained in this study showed the potential of T. elegans in decolorizing palm oil mill effluent.
اظهر المزيد [+] اقل [-]Urban Indian Environment in the Context of a Pandemic
2024
Abhijith. S., Akshara S. N. and P. P. Nikhil Raj
The spread of the Coronavirus disease 2019 (COVID-19) has impacted human life severely since November 2019. The urban centers in the world, especially, were highly affected by the diseases. Several socioeconomic and environmental factors probably enhanced the spread of the pandemic and consequent mortality. Many studies examining environmental factors, such as air quality, in urban centers indicate the roles of those factors in the spread of diseases and consequent mortality. However, other socioeconomic factors that directly or indirectly elevate the mass death of people are seldom studied. The present study explores the socioeconomic factors and air quality influencing COVID-19 deaths in urban India. We randomly selected 19 Indian cities and collected each city’s socioeconomic and air quality data from reliable and open sources. The data were analyzed using multivariate data analysis techniques using R statistics. The results showed significant positive relationships, population, and total area of the urban centers.
اظهر المزيد [+] اقل [-]Effective Utilization of Bio and Industry Wastes to Produce Thermal Insulation Concrete: A Novel Solution for Energy-Saving Buildings
2024
Jerlin Regin, Maria Rajesh Antony, Raya Said Mohammed Al-Zaabiya, May Darwish Ali Al Balushi, Hamdah Ali Ahmed Al Shehhi, Nooralsnaa Abdallah Mohammed Al-Farsi and Athari Khalifa Handi Al-Saadi
The research addressed the effective and sustainable ways to enhance the thermal insulation properties of concrete without compromising its structural integrity. Traditional methods of enhancing thermal insulation in buildings, such as using thick layers of insulation materials, can be costly and may not always be practical in certain settings. Additionally, the disposal of waste materials such as date palm fiber, shopping plastic bags, and thermocol beads presents an environmental challenge. Therefore, this study aims to investigate the potential use of these waste materials as additives in concrete to improve its thermal insulation properties while also providing a sustainable solution for waste disposal. Date palm fiber is a natural material that is widely available in the Gulf region. Plastic bags are a huge waste from the shops every day, and from the packing materials, this thermocol is a huge waste product. We have to recycle it very efficiently to protect the environment. Three types of special materials, such as thermocol beads (30%), date palm fiber (3%) & shopping plastic bag fiber (3%), were tested in this research. Thermocol beads, when used, reduce their strength and increase the thermal resistance of concrete, while date palm fiber and shopping bag waste fiber, when used, increase the strength of concrete and also increase the thermal resistance of concrete, so it is an excellent reinforcing material and thermal barrier for shopping plastic bags fiber and date palm fiber. Based on this research result, when thermocol beads are used, they prevent heat by 42 percent, while when added with date palm fiber and plastic fiber, they also block heat by an average of 30% percent; thus, all three ingredients are considered excellent thermal insulation material. The reduction in thermal conductivity was attributed to the formation of air voids and the low thermal conductivity of the waste materials. The density of the concrete decreased with the addition of the waste materials. The study suggests that the incorporation of date palm fiber, shopping bag waste fiber, and thermocol beads can be an effective way to enhance the thermal insulation properties of concrete while also providing an environmentally sustainable solution for waste disposal. It will boost green energy technology in the construction industry.
اظهر المزيد [+] اقل [-]A Facile Method for Synthesis of α-Fe2O3 Nanoparticles and Assessment of Their Characterization
2024
Paramjeet Dhull, Rajesh Kumar Lohchab, Mikhlesh Kumari, Kulbir Singh, Anil Kumar Bhankhar and Shaloo
Recently, magnetic nanomaterials have gained much attention from researchers because of their various unique physical and chemical properties and usage in a wide range of technological aspects. In this study, the synthesis of α-Fe2O3 nanoparticles was performed by a simple co-precipitation method. The synthesis of α-Fe2O3 nanoparticles was carried out by mixing ferric nitrate and oxalic acid in an aqueous solution followed by evaporation, resulting in the solution’s dried form. The synthesized nanoparticles were analyzed by XRD, FTIR, Raman spectra, SEM-EDX, DSC, BET, and Zeta potential for detailed examination of the morphology, structure, and other physicochemical characteristics. The XRD results confirmed that the nanoparticles formed were Hematite (α-Fe2O3) after the evaluation of obtained spectra compared to the Joint Committee on Powder Diffraction Standards Database (JCPDS). The FTIR spectra showed various bonds among functional groups, O-H bending, Fe-O group, and within-vibration bonds. The phase study of the α-Fe2O3 nanoparticles was performed by using Raman spectroscopy. SEM depicted a sphere-like or rhombohedral (hexagonal) structure, and the EDX spectrum confirmed the peaks of iron and oxygen.
اظهر المزيد [+] اقل [-]Feasibility Analysis of Municipal Wastewater Reinjection Technology
2024
Haijie Hu, Huan Zhang, Lei Han, Le Zhang, Tao Yu and Chengtun Qu
To study the feasibility of using municipal sewage as a reserve water source for oilfield reinjection, the water sample treated by the municipal sewage treatment plant and the produced water of the Chang 2 reservoir were taken as the research objects. Through the analysis of water quality and compatibility, the optimal ratio of reinjection water samples was determined. At the same time, the clay swelling experiment and reservoir damage experiment were carried out. The experimental results show that the salinity of municipal sewage is low, and the content of scale ions is low. When the ratio of produced water to municipal sewage is 7:3, the scale formation amount can reach 42.5 mg.L-1, and when the scale inhibitor is added, the scale formation amount can be reduced to 10.4 mg.L-1. The mixed water sample will not cause clay expansion. Meanwhile, Chang 2 reservoir is moderately weak water sensitive and weak acid sensitive. The oil content, suspended solids content, and median particle size of the mixed water sample during reinjection should be controlled at 5 mg.L-1, 5 mg.L-1, and 5 μm to ensure that the reinjected water sample does not cause damage to the reservoir.
اظهر المزيد [+] اقل [-]Determinants Influencing the Environmental Impact Assessment Compliance Rate by Industries in Aba City, Southeast, Nigeria
2024
C. Sam-Amobi, O. J. Ubani, K. Efobi and Nathan Ajukwara
A United Nations (UN) report on the severity of pollution in cities around the world in 2020 rated Aba City, Nigeria, as the most polluted city in the world. This has become a source of worry and embarrassment for environmental policymakers in the country. The matter of whether industries are efficiently managing their wastes came to the fore, and policymakers questioned the compliance of these industries with environmental laws and Environmental Impact Assessment (EIA) guidelines and the reasons behind the seemingly non-compliance of the industries with these guidelines. The study aimed to investigate the determinants that influence compliance with EIA guidelines by industries in Aba. A survey research method was employed in the study. Questionnaires and interviews were also used to elicit data from industrialists and environmentalists in the study area. 384 industries were sampled in the study. Principal Component Analysis was used to test the hypothesis. The study revealed seven factors that influenced the compliance rate of EIA guidelines by industries, and they include weak public participation (65.5%), ignorance (54.5%), an effective legal system and legislation (42.4%), the cost of compliance (40.5%), weak coordination along the line of departments (town planning officers and consultants) (35.5%), delay in approval (30.5%), and limited scope (28.9%). It was recommended that the government strengthen the legal system as it relates to the implementation of EIA; then, there is a need to involve affected stakeholders in the preparation of EIA documents.
اظهر المزيد [+] اقل [-]Sustainability Analysis of Landfill Cover System Constructed Using Recycled Waste Materials by Life Cycle Assessment
2024
G. Sanoop, Sobha Cyrus and G. Madhu
The sustainability of using industrial by-products for the construction of landfill cover was determined using Life Cycle Assessment (LCA). LCA was carried out on four materials: sand- bentonite mix, red earth- bentonite mix (amended soil), Waste Foundry Sand (WFS)- Bentonite mix, and WFS- marine clay mix. The former two are commonly used cover soils and the latter two are alternative materials proposed. Environmental impacts based on the extraction of resources, processing, transportation to the site, and site preparation were considered using the ‘cradle to site’ approach. Analysis was carried out in OpenLCA software using the ReCiPe (H) Midpoint method of impact assessment. Required data for analysis was taken from the Ecoinvent database supplemented with inputs from a field survey. The use of WFS in landfill cover systems was found to be sustainable using LCA studies when compared to conventional materials.
اظهر المزيد [+] اقل [-]Passivation Effect of Corn Vinasse Biochar on Heavy Metal Lead in Paddy Soil of Pb-Zn Mining Area
2024
M. Xiong, G. Q. Dai, R. G. Sun and Z. Zhao
The in-lab incubation experiments were conducted to identify the passivation effect of corn vinasse biochar, which was prepared at different temperatures, on heavy metal Pb in paddy soil of the Pb-Zn mining area. The results showed that after 30 days of biochar amended to the soil, the soil pH and organic carbon content increased by 2.72%-8.47% and 27.79%-65.26%, respectively. The CO32- and OH- contained in corn vinasse biochar could react with Pb and generate carbonate and hydroxide of Pb. In comparison with the treatment control, the bioavailable fractions of Pb were reduced by 26.6%, 23.30%, 26.95%, and 35.33%, respectively, in biochar-amended treatments. Exchangeable fractions of Pb decreased by 21.50%, 21.33%, 22.58%, and 22.58% for the treatment 3% (300°C), 6% (300°C), 3% (600°C), and 6% (300°C) corn vinasse biochar, respectively, compared with the treatment control. As a whole, corn vinasse biochar could effectively promote the transformation of Pb in soil from the exchangeable fractions into the Fe-Mn oxide-bound fractions and residue fractions, with a significant passivation effect for Pb in soil and more effective passivation by high-temperature preparation and increased dosage of biochar.
اظهر المزيد [+] اقل [-]