خيارات البحث
النتائج 2911 - 2920 من 5,151
Residual degradation and toxicity of insecticides against Bactrocera oleae النص الكامل
2018
Varikou, Kyriaki | Garantonakis, Nikos | Marketaki, Maria | Charalampous, Angeliki | Anagnostopoulos, Chris | Bempelou, Eleftheria
Field and lab trials took place in Crete (July to September 2016), concerning the residual degradation and toxicity of seven active ingredients applied as bait sprays against the olive fruit fly. Highest residues were recorded in olive leaves for dimethoate and phosmet (~ 60 mg/kg) immediately after application (day 1+), while a threefold and fivefold reduction was observed 1 week later, respectively. Residues of pyrethroids were determined at lower levels (< 10 mg/kg) but remained almost stable for a longer period of time. Finally, thiacloprid and spinosad residues were determined at 5.81 and 0.19 mg/kg respectively (day 1+), and rapidly decreased below the LOQ. Highest toxicity against the olive fruit fly was observed just right after the application of dimethoate (100%), a-cypermethrin (80%), and L-cyhalothrin (72.92%). Although the toxicity of dimethoate was significantly reduced 1 week after the application (80%) and then minimized, toxicity of pyrethroids remained almost stable (> 60%) for the first 2 weeks and then decreased to 30–40%, which remained stable up to the end of the study (8 weeks). Concerning phosmet, its toxicity ranged from 35 to 56% for 3 weeks with no significant reduction, while spinosad presented a lower toxicity profile (50% only for 1 week). The benefits of these results in the knowledge of insecticide residues and their toxicity against olive fruit fly can be used for improving olive fruit fly control.
اظهر المزيد [+] اقل [-]Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China النص الكامل
2018
Feng, Jingjing | Chen, Xiaolin | Jia, Lei | Liu, Qizhen | Chen, Xiaojia | Han, Deming | Cheng Jinping,
Wastewater treatment plants (WWTPs) are the most common form of industrial and municipal wastewater control. To evaluate the performance of wastewater treatment and the potential risk of treated wastewater to aquatic life and human health, the influent and effluent concentrations of nine toxic metals were determined in 12 full-scale WWTPs in Shanghai, China. The performance was evaluated based on national standards for reclamation and aquatic criteria published by US EPA, and by comparison with other full-scale WWTPs in different countries. Potential sources of heavy metals were recognized using partial correlation analysis, hierarchical clustering, and principal component analysis (PCA). Results indicated significant treatment effect on As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn. The removal efficiencies ranged from 92% (Cr) to 16.7% (Hg). The results indicated potential acute and/or chronic effect of Cu, Ni, Pb, and Zn on aquatic life and potential harmful effect of As and Mn on human health for the consumption of water and/or organism. The results of partial correlation analysis, hierarchical clustering based on cosine distance, and PCA, which were consistent with each other, suggested common source of Cd, Cr, Cu, and Pb and common source of As, Hg, Mn, Ni, and Zn. Hierarchical clustering based on Jaccard similarity suggested common source of Cd, Hg, and Ni, which was statistically proved by Fisher’s exact test.
اظهر المزيد [+] اقل [-]Wastewater treatment plants as a source of microplastics in river catchments النص الكامل
2018
Kay, Paul | Hiscoe, Robert | Moberley, Isobel | Bajic, Luke | McKenna, Niamh
It is now well established that the oceans contain significant accumulations of plastic debris but only very recently have studies began to look at sources of microplastics (MPs) in river catchments. This work measured MPs up- and downstream of six wastewater treatment plants (WWTPs) in different catchments with varying characteristics and found that all led to an increase in MPs in rivers. Nevertheless, the data collected indicated that there were other important sources of MPs in the catchments studied and that these may include atmospheric deposition, agricultural land to which sewage sludge has been applied, and diffuse release of secondary MPs following the breakdown of larger plastic items. MPs were comprised mainly of fibres, fragments, and flakes with pellets and beads only dominating at one site. Variation in MP pollution occurred over time and this difference was greater at some sites than others. A key research need is the further study of MP sources in river catchments to facilitate management efforts to reduce their presence in freshwater and marine environments.
اظهر المزيد [+] اقل [-]Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42 النص الكامل
2018
Al-Ali, Ameen | Deravel, Jovana | Krier, François | Béchet, Max | Ongena, Marc | Jacques, Philippe
In this work, the behavior in tomato rhizosphere of Bacillus velezensis FZB42 was analyzed taking into account the surfactin production, the use of tomato roots exudate as substrates, and the biofilm formation. B. velezensis FZB42 and B. amyloliquefaciens S499 have a similar capability to colonize tomato rhizosphere. Little difference in this colonization was observed with surfactin non producing B. velezensis FZB42 mutant strains. B. velezensis is able to grow in the presence of root exudate and used preferentially sucrose, maltose, glutamic, and malic acids as carbon sources. A mutant enable to produce exopolysaccharide (EPS⁻) was constructed to demonstrate the main importance of biofilm formation on rhizosphere colonization. This mutant had completely lost its ability to form biofilm whatever the substrate present in the culture medium and was unable to efficiently colonize tomato rhizosphere.
اظهر المزيد [+] اقل [-]Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae النص الكامل
2018
Tchameni, Séverin Nguemezi | Mbiakeu, Staelle Njamou | Sameza, Modeste Lambert | Jazet, Pierre Michel Dongmo | Tchoumbougnang, François
The aim of this work was to evaluate the antimicrobial activities of leaves and epicarp of Citrus aurantifolia essential oil against Phytophthora colocasiae, the causative agent of taro leaf blight. Oils were extracted by hydrodistillation, and their chemical composition was determined by gas chromatography and gas chromatography coupled with mass spectrometry. Antimicrobial activities of oils were tested in vitro against mycelium growth and sporangium production. In situ tests were done on healthy taro leaves, and the necrosis symptoms were evaluated. Results showed that the essential oil extraction yields from leaves and epicarp were 0.61 and 0.36%, respectively. Limonene (48.96%), bornyl acetate (14.18%), geraniol (10.53%), geranial (3.93%), and myrcene (3.14%) were the main components in leaf oil, while limonene (59.09%), cis-hydrate sabinene (7.53%), geranial (5.61%), myrtenol (5.02%), and terpinen-4-ol (3.48%) were the main components in epicarp oil. Both oils exhibited antimicrobial activities with total inhibition of the mycelium growth at 500 and 900 ppm for leaf and epicarp, respectively. The highest inhibitory concentration of sporangium production was 400 (72.84%) and 800 ppm (80.65%) for leaf and epicarp oil, respectively. For the standard fungicide (metalaxyl), the total inhibition value of mycelial growth and sporangium production was 750 ppm. In situ tests showed that, at 5000 ppm, total inhibition (100%) was obtained for a preventive test, while 50% of the inhibition was observed for a curative test when leaf oil was applied. When epicarp essential oil was applied at 5000 ppm, 47.5 and 16.66% of the reduction of leaf necrosis were observed for the preventive and curative test, respectively. There were positive correlations between both the oil concentration and the reduction of necrosis caused by P. colocasiae. These findings suggest that the C. aurantifolia essential oil could serve as an eco-friendly biocontrol for the management of taro leaf blight.
اظهر المزيد [+] اقل [-]Performance and biofilm characteristics of biotrickling filters for ethylbenzene removal in the presence of saponins النص الكامل
2018
Qian, Hui | Cheng, Yan | Yang, Chunping | Wu, Shaohua | Zeng, Guangming | Xi, Jinying
Saponins were applied to enhance ethylbenzene removal in biotrickling filters (BTFs), and comparison experiments were carried out to evaluate the effects of saponins on ethylbenzene removal and biofilm characteristics at various saponin concentrations. Results showed that the optimum concentration of saponins was 40 mg/L and a maximum removal efficiency (RE) of ethylbenzene reached 84.3%. When the inlet ethylbenzene concentration increased, ranging from 750 to 2300 mg/m³, the RE decreased from 92.1 to 60.8% and from 69.4 to 44.2% for BTF1 and BTF2 in which saponin was and was not added, respectively. The corresponding RE declined from 91.1 to 40.8% and from 71.5 to 35.8% with a decreased empty bed residence time ranging from 45 to 7.5 s. Additionally, significant differences existed between both BTFs not only in the contents of polysaccharide and proteins but also in the surface charge of biofilms, and the ratio of protein to polysaccharide increased with the increase of saponin concentration, which indicated the presumable effect of saponins on liquid-biofilm transfer rates of ethylbenzene. Mechanisms for the enhanced removal of hydrophobic volatile organic compounds at the presence of surfactants were also discussed.
اظهر المزيد [+] اقل [-]Biorational substitution of piperonyl butoxide in organic production: effectiveness of vegetable oils as synergists for pyrethrums النص الكامل
2018
Marchand, Patrice A. | Dimier-Vallet, Claire | Vidal, Rodolphe
Piperonyl butoxide is a semi-synthetic synergist for natural pyrethrum and synthetic pyrethroid insecticides in phytochemicals and biocides. As such it is used in large quantities for crop treatments, stored grain protection, disinfestation of grain storage facilities and indoor uses. Piperonyl butoxide is consequently a regular contaminant in stored grains, and subsequently in corresponding cereal food products and meat via feed uses. Therefore it is regularly monitored and its MRL is ongoing a reassessment. It is also considered as a possible human carcinogen and a suspected endocrine disruptor. For all these reasons and considerations most of the countries have already banned its use in Organic Farming as France in 2017. Thus, ecological substitution of with biorational and sustainable solutions is required. Vegetable oils have been described as exhibiting similar potency and synergistic effects. We have reviewed the literature and have proceeded to ecotoxicological efficacy tests in order to determine the best and most durable substitution candidates. Sesame and rape seed oil were determined to be the most efficient.
اظهر المزيد [+] اقل [-]Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry النص الكامل
2018
Rodríguez Chialanza, Mauricio | Sierra, Ignacio | Pérez Parada, Andrés | Fornaro, Laura
There are several techniques used to analyze microplastics. These are often based on a combination of visual and spectroscopic techniques. Here we introduce an alternative workflow for identification and mass quantitation through a combination of optical microscopy with image analysis (IA) and differential scanning calorimetry (DSC). We studied four synthetic polymers with environmental concern: low and high density polyethylene (LDPE and HDPE, respectively), polypropylene (PP), and polyethylene terephthalate (PET). Selected experiments were conducted to investigate (i) particle characterization and counting procedures based on image analysis with open-source software, (ii) chemical identification of microplastics based on DSC signal processing, (iii) dependence of particle size on DSC signal, and (iv) quantitation of microplastics mass based on DSC signal. We describe the potential and limitations of these techniques to increase reliability for microplastic analysis. Particle size demonstrated to have particular incidence in the qualitative and quantitative performance of DSC signals. Both, identification (based on characteristic onset temperature) and mass quantitation (based on heat flow) showed to be affected by particle size. As a result, a proper sample treatment which includes sieving of suspended particles is particularly required for this analytical approach.
اظهر المزيد [+] اقل [-]Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends النص الكامل
2018
Paramasivam, Baranitharan | Kasimani, Ramesh | Sakthivel, R. (Rajamohan)
The present research focuses on the analyzing the characteristics of bio-oil derived from intermediate pyrolysis of Aegle marmelos (AM) seed cake and its suitability for C.I. engine adaptation. Owing to the high volatile matter content of 73.69%, Aegle marmelos biomass was selected as the feedstock for this research. The intermediate pyrolysis was carried out at 600 °C in a 2-kg fixed bed type pyrolysis reactor at a heating rate of 10 °C/min and the obtained bio-oil was characterized by different analytical methods. As per American Society for Testing and Materials (ASTM) standards, physicochemical properties of the bio-oil were tested and it was observed that bio-oil is a highly viscous fluid with low calorific value. Analysis of bio-oil through FT-IR and GC-MS examination confirmed the presence of phenol, esters, alkyl, and oxygenated compounds. The performance and emission testing of direct injection diesel engine were conducted with various bio-oil blends and the results were compared with baseline diesel fuel. The experimental results showed that the addition of bio-oil decreased BTE (%) while increasing the BSEC (MJ/kW-h). At the same time, increasing the bio-oil ratio with diesel decreases dangerous emissions such as carbon monoxide and oxides of nitrogen emissions in the engine exhaust. According to engine test result, it was suggested that up to 20% of AM bio-oil (F20) can be employed as engine fuel for better engine operating characteristics.
اظهر المزيد [+] اقل [-]Micro-edaphic factors affect intra-specific variations in trace element profiles of Noccaea praecox on ultramafic soils النص الكامل
2018
Mišljenović, Tomica | Jakovljević, Ksenija | Jovanović, Slobodan | Mihailović, Nevena | Gajić, Boško | Tomović, Gordana
The aim of this study was to compare trace element profiles of Noccaea praecox (Wulfen) F. K. Mey. growing on ultramafic soils in different habitat types and to observe differences in uptake and translocation of trace elements. Physico-chemical characteristics of the soil and concentrations of P₂O₅, K₂O, Ca, Fe, Mn, Zn, Cu, Ni, Cr, Pb, Cd, and Co in plant samples were presented. Biological concentration, accumulation, and translocation factors were calculated to estimate accumulation potential of different N. praecox accessions. All of the studied accessions were Ni hyperaccumulators (with shoot concentrations up to 14,593 mg kg⁻¹), but with notable differences in accumulation and translocation rates. Significant differences in accumulation and translocation patterns of trace elements were observed among accessions from habitats characterized as serpentine steppes on dry, shallow soils in contrast to the accessions from habitats with higher soil moisture, and higher content of organic matter.
اظهر المزيد [+] اقل [-]