خيارات البحث
النتائج 311 - 320 من 4,367
The atmosphere as a source/sink of polychlorinated biphenyls to/from the Lower Duwamish Waterway Superfund site النص الكامل
2017
Apell, Jennifer N. | Gschwend, P. M.
Waterbodies polluted with polychlorinated biphenyls (PCBs) may cause the air in the surrounding area to become PCB-contaminated. Conversely, when a waterbody is located in or near an urban area, the deposition of atmospheric PCBs may act as a low-level, ongoing source of PCB contamination to that water. Distinguishing these situations is necessary to be protective of human populations and to guide efforts seeking to cleanup such aquatic ecosystems. To assess the situation at the Lower Duwamish Waterway (LDW) Superfund site, low-density polyethylene passive samplers were deployed in the summer of 2015 to quantify freely dissolved water and gaseous air concentrations of PCBs thereby enabling estimates of the direction and magnitude of air-water exchange of PCB congeners. For the sum of the 27 PCB congeners, average concentrations were 220 pg/m3 (95% C.I.: 80–610) in the air and 320 pg/L (95% C.I.: 110–960) in the water. The sum of air-water exchange fluxes of these PCB congeners was estimated to be 68 ng/m2/day (95% C.I.: 30–148) into the lower atmosphere, contrasting with the reported wet and dry depositional flux of only 5.5 ng/m2/day (95% C.I.: 1–38) from the air into the water. Therefore, the atmosphere was ultimately a sink of PCBs from the LDW Superfund site, at least under 2015 summertime conditions. However, we conclude that air-water exchange of PCBs is likely only a minor sink of PCBs from the LDW and only a minor source of contamination to the region's local atmosphere.
اظهر المزيد [+] اقل [-]Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis النص الكامل
2017
Young, Austin | Protheroe, Amy | Lukowiak, Ken
We tested the effect of silver nanoparticles (AgNPs) on the ability of the pond snail, Lymnaea stagnalis, to learn and form long-term memory (LTM) following operant conditioning of aerial respiration. We hypothesized that the AgNPs would act as a stressor and prevent learning and LTM formation. We tested snails exposed for either 72 h or only during training and testing for memory (i.e. 0.5 h) and found no difference between those treatments. We found that at a low concentration of AgNPs (5 μg/L) neither learning and nor memory formation were altered. When we increased the concentration of AgNPs (10 μg/L) we found that memory formation was enhanced. Finally, at a higher concentration (50 μg/L) memory formation was blocked. To determine if the disassociation of Ag+ from the AgNPs caused the effects on memory we performed similar experiments with AgNO3 and found similar concentration-dependent results. Finally, we found that snails perceive the AgNPs differently from Ag+ as there was context specific memory. That is, snails trained in AgNPs did not show memory when tested in Ag+ and vice-versa. We believe that changes in memory formation may be a more sensitive determination of AgNPs on aquatic organisms than the determination of a LC50.
اظهر المزيد [+] اقل [-]Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter النص الكامل
2017
Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m−3) was much higher than that in the particle phase (62 ± 8 pg m−3) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (−2.34, −1.25, and −0.15 kJ mol−1 at 293, 303, and 313 K, respectively), ΔH° (−34.34 kJ mol−1), and ΔS° (−109.22 J mol−1 K−1) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process.
اظهر المزيد [+] اقل [-]A laboratory assessment of the potential effect of Cry1Ab/Cry2Aj-containing Bt maize pollen on Folsomia candida by toxicological and biochemical analyses النص الكامل
2017
The common soil arthropod Folsomia candida can survive well when fed only maize pollen and thus may be exposed to insecticidal proteins by ingesting insect-resistant genetically engineered maize pollen containing Bacillus thuringiensis (Bt) proteins when being released into the soil. Laboratory experiments were conducted to assess the potential effects of Cry1Ab/Cry2Aj-producing transgenic Bt maize (Shuangkang 12–5) pollen on F. candida fitness. Survival, development, and the reproduction were not significantly reduced when F. candida fed on Bt maize pollen rather than on non-Bt maize pollen, but these parameters were significantly reduced when F. candida fed on non-Bt maize pollen containing the protease inhibitor E-64 at 75 μg/g pollen. The intrinsic rate of increase (rm) was not significantly reduced when F. candida fed on Bt maize pollen but was significantly reduced when F. candida fed on non-Bt maize pollen containing E−64. The activities of antioxidant-related enzymes in F. candida were not significantly affected when F. candida fed on Bt maize pollen but were significantly increased when F. candida fed on non-Bt pollen containing E−64. The results demonstrate that consumption of Bt maize pollen containing Cry1Ab/Cry2Aj has no lethal or sublethal effects on F. candida.
اظهر المزيد [+] اقل [-]Chinese province-scale source apportionments for sulfate aerosol in 2005 evaluated by the tagged tracer method النص الكامل
2017
Appropriate policies to improve air quality by reducing anthropogenic emissions are urgently needed. This is typified by the particulate matter (PM) problem and it is well known that one type of PM, sulfate aerosol (SO42−), has a large-scale impact due to long range transport. In this study we evaluate the source–receptor relationships of SO42− over East Asia for 2005, when anthropogenic sulfur dioxide (SO2) emissions from China peaked. SO2 emissions from China have been declining since 2005–2006, so the possible maximum impact of Chinese contributions of SO42− is evaluated. This kind of information provides a foundation for policy making and the estimation of control effects. The tagged tracer method was applied to estimate the source apportionment of SO42− for 31 Chinese province-scale regions. In addition, overall one-year source apportionments were evaluated to clarify the seasonal dependency. Model performance was confirmed by comparing with ground-based observations over mainland China, Taiwan, Korea, and Japan, and the model results fully satisfied the performance goal for PM. We found the following results. Shandong and Hebei provinces, which were the largest and second largest SO2 sources in China, had the greatest impact over the whole of East Asia with apportionments of around 10–30% locally and around 5–15% in downwind receptor regions during the year. Despite large SO2 emissions, the impact of south China (e.g., Guizhou, Guangdong, and Sichuan provinces) was limited to local impact. These results suggest that the reduction policy in south China contributes to improving the local air quality, whereas policies in north and central China are beneficial for both the whole of China and downwind regions. Over Taiwan, Korea, and Japan, the impact of China was dominant; however, local contributions were important during summer.
اظهر المزيد [+] اقل [-]Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings النص الكامل
2017
Influence of multiwalled carbon nanotubes with outer diameters > 50 nm (MW) and a surfactant sodium dodecyl benzene sulfonate (SDBS) on bioaccumulation and translocation of pyrene and 1-methylpyrene (1-CH3-pyrene) in maize seedlings in single-(F1) and bi-(F2) compound systems was investigated. Pyrene concentration in shoots was detected in all treatments in F1 and F2, ranging in 10.43–60.28 ng/g and 21.46–40.21 ng/g, respectively, and its translocation factors (TFs) ranged in 0.12–0.19 and 0.07–0.16. However, no 1-CH3-pyrene in shoots was detected from F1 and F2, indicating almost 100% suppression on its translocation from roots to shoots. SDBS at 100 mg/kg significantly enhanced pyrene bioaccumulation in roots and shoots by 43.5% and 77.4% in F1, and 21.7% in roots in F2, while showed insignificant effect on shoot concentration in F2. In contrast, SDBS at 100 mg/kg exerted no significant effect on root 1-CH3-pyrene concentration in F1 and F2. With increasing amendment level of MW from 50 to 3000 mg/kg, both pyrene and 1-CH3-pyrene concentrations in roots and shoots sharply decreased, indicating an increasing suppression on their bioaccumulation and translocation in plant. As for 3000 mg/kg MW + 100 mg/kg SDBS, root concentrations of pyrene and 1-CH3-pyrene in F1 were significantly reduced by 53.4% and 100%, while shoot concentration of pyrene was not affected, generally consistent with the trend of the corresponding bioaccumulation factors (BCFroot) and TFs. As for F2 with the same treatment, root 1-CH3-pyrene concentration declined by 68.6%, whereas pyrene bioaccumulation in roots and shoots was insignificantly affected, which were also in agreement with their BCFroot and TFs. Results of this work highlight the combined impacts of soil amendment with carbon nanotubes and surfactant on bioaccumulation and translocation of pyrene and 1-CH3-pyrene in maize seedlings in multi-pollutant exposure systems, which is important for soil pollution control and food safety assessment.
اظهر المزيد [+] اقل [-]In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies النص الكامل
2017
Han, Bing | Zhang, Man | Zhao, Dongye
This work tested a new remediation technology for in-situ degradation of estrogens by delivering a new class of stabilized manganese oxide (MnO2) nanoparticles in contaminated soils. The nanoparticles were prepared using a food-grade carboxymethyl cellulose (CMC) as a stabilizer, which was able to facilitate particle delivery into soil. The effectiveness of the technology was tested using 17β-estradiol (E2) as a model estrogen and three sandy loams (SL1, SL2, and SL3) as model soils. Column transport tests showed that the nanoparticles can be delivered in the three soils, though retention of the nanoparticles varied. The nanoparticle retention is strongly dependent on the injection pore velocity. The treatment effectiveness is highly dependent upon the mass transfer rates of both the nanoparticles and contaminants. When the E2-laden soils were treated with 22–130 pore volumes of a 0.174 g/L MnO(2) nanoparticle suspension, up to 88% of water leachable E2 was degraded. The nanoparticles were more effective for soils that offer moderate desorption rates of E2. Decreasing injection velocity or increasing MnO(2) concentration facilitate E2 degradation. The nanoparticles-based technology appears promising for in-situ oxidation of endocrine disruptors in groundwater.
اظهر المزيد [+] اقل [-]Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid? النص الكامل
2017
Johansson, Jana H. | Berger, Urs | Cousins, Ian T.
Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.
اظهر المزيد [+] اقل [-]Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay النص الكامل
2017
Sajayan, Arya | Seghal Kiran, G. | Priyadharshini, S. | Poulose, Navya | Selvin, Joseph
A bioflocculant-producing bacterial strain, designated MSI021, was isolated from the marine sponge Dendrilla nigra and demonstrated 94% flocculation activity in a kaolin clay suspension. MSI021 was identified as Bacillus cereus based on phylogenetic affiliation and biochemical characteristics. The purified extra-cellular bioflocculant was chemically elucidated as a polysaccharide molecule. The polysaccharide bioflocculant was stable under both acidic and alkaline conditions (pH 2.0–10.0) and temperatures up to 100 °C. The purified bioflocculant efficiently nucleated the formation of silver nanoparticles which showed broad spectrum antibacterial activity. The ability of the bioflocculant to remediate heavy metal toxicity was evaluated by measuring the inhibition of bioluminescence expression in Vibrio harveyi. Enrichment of heavy metals such as zinc, mercury and copper at concentrations of 1, 2 and 3 mM in culture media showed significant reduction of bioluminescence in Vibrio, whereas media enriched with heavy metals and bioflocculant showed dose dependent improvement in the expression of bioluminescence. The assay results demonstrated that the polysaccharide bioflocculant effectively mitigates heavy metal toxicity, thereby improving the expression of bioluminescence in Vibrio. This bioluminescence reporter assay can be developed into a high-throughput format to monitor and evaluate of heavy metal toxicity. The findings of this study revealed that a novel polysaccharide bioflocculant produced by a marine B. cereus demonstrated strong flocculating performance and was effective in nucleating the formation antibacterial silver nanoparticles and removing heavy metals. These results suggest that the MSI021 polysaccharide bioflocculant can be used to develop greener waste water treatment systems.
اظهر المزيد [+] اقل [-]Benzo(a)pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus) النص الكامل
2017
Zha, Jinmiao | Hong, Xiangsheng | Rao, Haiou | Yuan, Lilai | Wang, Zijian | Kumaran, Satyanarayanan Senthil
To examine the effects of BaP on tissue apoptosis, laboratory studies were conducted using juvenile Chinese rare minnows (Gobiocypris rarus) exposed to 1, 5, 20, and 80 μg/L of BaP for 28 days. The post-treatment pathological findings in the liver were associated with hepatocyte swelling, karyopyknosis, and karyorrhexis. Moreover, an increase in the goblet cells in the intestine, epithelial hyperplasia of the gills and fusion of gill lamellae were observed. Significant increases in hepatocyte apoptosis using the TUNEL stain were observed in the liver tissue but not in the intestine and gills. In addition, BaP exposure significantly up-regulated the mRNA levels of cyp1a1, p53, bax, bcl-2, and caspase-9 in the liver following the 5, 20, and 80 μg/L treatments, whereas the apaf-1 was significantly down-regulated following all treatments. Moreover, the activities of caspase 3 and caspase 8 were markedly elevated, whereas the protein expression levels of Apaf-1 were down-regulated following the 20 and 80 μg/L treatments. Taken together, our results suggested that BaP strongly induces tissue-specific apoptosis in vivo, leading to significant pathological changes. The responsiveness of apoptotic-related genes demonstrates that BaP induced apoptosis in the liver may be through a mitochondria-independent pathway.
اظهر المزيد [+] اقل [-]