خيارات البحث
النتائج 311 - 320 من 5,153
Surface water flooding, groundwater contamination, and enteric disease in developed countries: A scoping review of connections and consequences النص الكامل
2018
Andrade, L. | O'Dwyer, J. | O'Neill, E. | Hynds, P.
Significant volumes of research over the past four decades has sought to elucidate the social, infrastructural, economic, and human health effects of climate change induced surface flooding. To date, epidemiological and public health studies of flooding events have focused on mental health effects, vector-borne diseases, and infectious enteric disease due to floodwater contact (i.e. typically low consumption rates). The inherent nature of groundwater (i.e. out of sight, out of mind) and the widely held belief that aquifers represent a pristine source of drinking water due to natural attenuation may represent the “perfect storm” causing direct consumption of relatively large volumes of surface flood-contaminated groundwater. Accordingly, the current study sought to systematically identify and synthesize all available peer-reviewed literature pertaining to the nexus between surface flooding, groundwater contamination and human gastroenteric outcomes. Just 14 relevant studies were found to have been published during the period 1980–2017, thus highlighting the fact that this potentially significant source of climate-related exposure to environmental infection has remained understudied to date. Studies differed significantly in terms of type and data reporting procedures, making it difficult to discern clear trends and patterns. Approximately 945 confirmed cases of flood-related enteric disease were examined across studies; these concurred with almost 10,000 suspected cases, equating to approximately 20 suspected cases per confirmed case. As such, no regional, national or global estimates are available for the human gastrointestinal health burden of flood-related groundwater contamination. In light of the demonstrable public health significance of the concurrent impacts of groundwater susceptibility and climate change exacerbation, strategies to increase awareness about potential sources of contamination and motivate precautionary behaviour (e.g. drinking water testing and treatment, supply interruptions) are necessary. Mainstreaming climate adaptation concerns into planning policies will also be necessary to reduce human exposure to waterborne sources of enteric infection.
اظهر المزيد [+] اقل [-]Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole النص الكامل
2018
Chen, Yanqiu | Lin, Kunde | Chen, Da | Wang, Kun | Zhou, Wenxiu | Wu, Yan | Huang, Xinwen
Polyhalogenated carbazoles (PHCs) are a class of emerging organic contaminants that have received increasing concern due to their widespread distribution and dioxin-like toxicity. Although previous studies have suggested possible natural sources of PHCs in the environment, the formation pathways are poorly understood. Here we explored the production of PHCs from halogenation of carbazole in the presence of Br⁻ and/or Cl⁻ under the catalysis of chloroperoxidase (CPO) isolated from the marine fungus Caldariomyces fumago. Overall, a total of 25 congeners including mono-to tetra-substituted chlorinated, brominated, and mixed halogenated carbazoles (with substitution patterns of –BrCl, –BrCl2, –BrCl3, –Br2Cl, –Br2Cl2, and –Br3Cl) were produced from the reactions under various conditions. The PHC product profiles were apparently dependent on the halide concentrations. In the CPO-mediated chlorination of carbazole, 3-mono- and 3,6-dichlorocarbazoles predominated in the formation products. In addition to the less abundant mixed halogenated carbazoles (-Br2Cl), 1,3,6-tri- and 1,3,6,8-tetrabromocarbazoles were the dominant products in reactions containing both Br⁻ and Cl⁻. The CPO-catalyzed halogenation of carbazole could take place in pH 3–7, but the formation products were pH dependent. Results of this study suggest that CPO-catalyzed halogenation of carbazole may play an important role in the natural formation of PHCs.
اظهر المزيد [+] اقل [-]Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea النص الكامل
2018
Eo, Soeun | Hong, Sang Hee | Song, Young Kyoung | Lee, Jongsu | Lee, Jongmyoung | Shim, Won Joon
To support microplastic management, the abundance, composition, and spatial distribution of microplastics on a national scale must be known. Hence, we studied the baseline level of microplastic pollution at 20 sandy beaches along the South Korean coast. All microplastic particles extracted from the sand samples were identified down to 20 μm in size using Fourier transform infrared spectroscopy. The abundances of large microplastics (L-MPs; 1–5 mm) and small microplastics (S-MPs; 0.02–1 mm) were in the range of 0–2088 n/m2 and 1400–62800 n/m2, respectively. Maximum microplastic abundance was in the size range of 100–150 μm, and particles smaller than 300 μm accounted for 81% of the total abundance. Expanded polystyrene (EPS) accounted for 95% of L-MPs, whereas S-MPs were predominantly composed of polyethylene (49%) and polypropylene (38%). The spatial distribution of L-MPs, excluding EPS, was significantly related to population, precipitation, proximity to a river mouth and abundance of macroplastic debris on beach. However, there were no relationships between S-MPs and other environmental and source-related factors, except for macroplastic debris and L-MPs excluding EPS. These results imply that S-MPs are mainly produced on beaches by weathering, whereas L-MPs other than EPS are mainly introduced from land-based sources and are also partly produced on beaches.
اظهر المزيد [+] اقل [-]Linking source characterisation and human health risk assessment of metals to rainfall characteristics النص الكامل
2018
Liu, An | Mummullage, Sandya | Ma, Yukun | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Metals deposited on urban road surfaces and incorporated in stormwater runoff are discharged into receiving waters, influencing their quality and can pose human health risks. Effective design of stormwater treatment measures is closely dependent on the in-depth understanding of stormwater pollutant sources and the associated health risks. The study discussed in this paper has linked the sources of metals in stormwater runoff and the accompanying human health risk to rainfall characteristics. The study outcomes confirmed that the metal contributions to stormwater runoff from the primary sources were in the order of sea salt > soil > traffic. Although traffic contributes a relatively lower percentage to wash-off, the human health risks posed by traffic sourced metals were relatively much higher. This implies that traffic sources should receive particular attention in treating stormwater. These outcomes have the potential to contribute to enhancing effective source control measures in order to safeguard natural waterways from polluted road wash-off.
اظهر المزيد [+] اقل [-]Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China النص الكامل
2018
Deng, Mingjun | Kuo, Dave T.F. | Wu, Qihang | Zhang, Ying | Liu, Xinyu | Liu, Shengyu | Hu, Xiaodong | Mai, Bixian | Liu, Zhineng | Zhang, Haozhi
The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L−1 to 103.91 ng L−1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L−1, respectively. Thirteen regulated heavy metals – including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) – have been detected in all wastewater samples at sub-mg L−1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills.
اظهر المزيد [+] اقل [-]Chronic radiation exposure modifies temporal dynamics of cytogenetic but not reproductive indicators in Scots pine populations النص الكامل
2018
Geras'kin, Stanislav | Oudalova, Alla | Kuzmenkov, Alexey | Vasiliyev, Denis
Over a period of 13 years (2003–2015), reproductive and cytogenetic effects are investigated in Scots pine populations growing in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident. In reference populations, the frequencies of cytogenetic abnormalities are shown to change with time in a cyclic manner. In chronically exposed populations, the cyclic patterns in temporal dynamics of cytogenetic abnormalities appear to be disturbed. In addition, a tendency to decrease in the frequencies of cytogenetic abnormalities with time as well as an increase in their variability with dose rate is revealed. In contrast, no significant impact of chronic radiation exposure on the time dynamics of reproductive indexes is detected. Finally, long-term observations on chronically exposed Scots pine populations revealed qualitative differences in the temporal dynamics of reproductive and cytogenetic indicators.
اظهر المزيد [+] اقل [-]The bivalve Ruditapes decussatus: A biomonitor of trace elements pollution in Sardinian coastal lagoons (Italy) النص الكامل
2018
Esposito, Giuseppe | Meloni, Domenico | Abete, Maria Cesarina | Colombero, Giorgio | Mantia, Martino | Pastorino, Paolo | Prearo, Marino | Pais, Antonio | Antuofermo, Elisabetta | Squadrone, Stefania
The anthropogenic contamination of water bodies with metals via fertilizer, industrial sewage and urban wastewater has resulted in widespread problems in aquatic organisms, but also poses a risk to consumer health. Shellfish from coastal and estuarine environments bioaccumulate toxic metals in their tissues due to their ability to concentrate inorganic contaminants several orders of magnitude above ambient levels. The aim of this study was to evaluate the presence of trace elements in adult specimens of indigenous clams (Ruditapes decussatus). To this end, wild clams were collected from four different brackish areas of Sardinia (Western Mediterranean Sea, Italy) devoted to extensive aquacultural practices. The concentration of 16 trace elements (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, Tl and Zn) in the tissues of the clams was quantified. The legal limits set by European Regulations for cadmium; mercury and lead were never exceeded. However, unexpectedly high values for aluminium and iron (mean 207 mg kg⁻¹ and 113 mg kg⁻¹ wet weight) were found in Santa Gilla lagoon, which is close to industrial settlements and had the highest values for the majority of chemical elements investigated. The highest values of the metalloid arsenic (As) were reported in the Porto Pozzo and San Teodoro lagoons (9.6 and 6.8 mg kg⁻¹ w.w., respectively). The clam R. decussatus confirmed the capacity of bivalves as suitable bioindicators of trace elements pollution. Further investigations are necessary for constant monitoring of clams, 32 which constitute an important traditional resource for the fishing activity in Sardinia.
اظهر المزيد [+] اقل [-]Uptake of ozone and modification of lipids in Betula Pendula pollen النص الكامل
2018
Zhu, Chao | Farah, Jinane | Choël, Marie | Gosselin, Sylvie | Baroudi, Moomen | Petitprez, Denis | Visez, Nicolas
Pollen allergy risk is modified by air pollutants, including ozone, but the chemical modifications induced on pollen grains are poorly understood. Pollen lipidic extract has been shown to act as an adjuvant to the allergenic reaction and therefore, the modification of lipids by air pollutants could have health implications. Birch pollen was exposed in vitro to ozone to explore the reactivity of O₃ on its surface and on its lipidic fraction. Uptake coefficients of ozone were determined for ozone concentration of 117 ppb on the surface of native birch pollen (8.6 ± 0.8 × 10⁻⁶), defatted pollen (9.9 ± 0.9 × 10⁻⁶), and for crushed pollen grains (34±3 × 10⁻⁶). The mass of ozone uptaken was increased by a factor of four for crushed pollen compared to native pollen showing a higher susceptibility to ozone of cytoplasmic granules and broken pollen grains. A total mass of extractible lipids of 27 mg per gram of birch pollen was found and a fraction of these lipids was identified and quantified (fatty acids, alkanes, alkenes and aldehydes). The distribution of lipids was modified by ozone exposure of 115 and 1000 ppb for 16 h with the following reactivity: consumption of alkene, formation of aldehydes and formation of nonanoic acid and octadecanoic acid. The quantity of ozone trapped in the lipidic fraction during 15 min at 115 ppb is enough to contribute to the reactivity of one-third of the alkenes demonstrating that pollen could be susceptible to an atmospheric increase of ozone concentration even for a very short duration complicating the understanding of the link between pollen allergy and pollution.
اظهر المزيد [+] اقل [-]A novel screening method to identify air pollution by genotoxic compounds النص الكامل
2018
Baráková, Daniela | Sharma, Anežka | Chropeňová, Mária | Čupr, Pavel
Genotoxic compounds, as common contaminants of the air environment, are of interest in air pollution monitoring. There are several methods to determine the level of these contaminants in different localities, many of which may be difficult to access with the use of conventional active and passive samplers. In the present study, the needles Pinus mugo Turra and Picea abies were used to monitor sampling localities in Austria, Slovakia, and the Czech Republic. Needles were extracted and chemical analysis and the genotoxicity bioassay SOS chromotest were used to obtain complex information about the chemical mixture of pollutants present and their genotoxic effects. The SOS chromotest method was optimized by using a CPRG chromogenic substrate to reduce the false positive genotoxic effect of needle extracts. Pinus mugo Turra and Picea abies were identified as suitable passive sampling matrices for long-term air monitoring using the same plants sampled at the same time. The presented study brings an innovative method for the fast screening and identification of localities loaded by genotoxic active air contaminants.
اظهر المزيد [+] اقل [-]Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China النص الكامل
2018
Zhang, Junwen | Ma, Teng | Yan, Yani | Xie, Xianjun | Abass, Olusegun K. | Liu, Congqiang | Zhao, Zhiqi | Wang, Zhizhen
High arsenic groundwater generally coexists with elevated Fe2+ concentrations (mg L−1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe2+ (i.e., μg L−1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh −221.7 to −31.9 mV) and arsenic concentration averages at 697 μg L−1. Acinetobacter (5.9–51.3%), Desulfosporosinus (4.6–30.2%), Brevundimonas (3.9–19%) and Pseudomonas (3.2–14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 μg L−1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important insights into the mechanism controlling arsenic mobility under weakly alkaline and reducing conditions, and furnishes that arsenate reduction by bacteria play a major role leading to high accumulation of desorbed arsenite in groundwater.
اظهر المزيد [+] اقل [-]