خيارات البحث
النتائج 311 - 320 من 7,921
Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis
2021
Talukder, Milton | Bi, Shao-Shuai | Jin, Hai-Tao | Ge, Jing | Zhang, Cong | Lv, Mei-Wei | Li, Jin-Long
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl₂) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
اظهر المزيد [+] اقل [-]Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in highland tropical water
2021
Goshu, G. | Koelmans, A.A. | de Klein, J.J.M.
Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season. Markers associated with ruminants (BacR) were identified in more than three quarters of the sites. Moderate to high levels of faecal pollution were found in most sub-basins, and the highest levels were found during the rainy season. A bacterial pollution risk map was developed for sub-basins of Lake Tana, including the un-gauged sub-basins. We demonstrate how bacterial pollution risk mapping can aid in improvements to water quality testing and reduce risk to the general population from stream bacteria.
اظهر المزيد [+] اقل [-]Foliar application of the sulfhydryl compound 2,3-dimercaptosuccinic acid inhibits cadmium, lead, and arsenic accumulation in rice grains by promoting heavy metal immobilization in flag leaves
2021
Yang, Xiaorong | Wang, Changrong | Huang, Yongchun | Liu, Bin | Liu, Zhongqi | Huang, Yizong | Cheng, Liulong | Huang, Yanfei | Zhang, Changbo
Mixed pollution due to heavy metals (HMs), especially cadmium (Cd), lead (Pb), and arsenic (As), seriously endangers the safety of food produced in paddy soil. In the field experiments, foliar application of 2,3-dimercaptosuccinic acid (DMSA) at the flowering stage was found to significantly reduce the levels of Cd, Pb, total As, and inorganic As (iAs) in rice grains by 47.95%, 61.76%, 36.37%, and 51.24%, respectively, without affecting the concentration of metallonutrients, including Mn, K, Mg, Ca, Fe, and Zn. DMSA treatment significantly reduced the concentrations of Cd, Pb, and As in the panicle node, panicle neck, and rachis, while those in the flag leaves were significantly increased by up to 20.87%, 49.40%, and 32.67%, respectively. DMSA application promoted the transport of HM from roots and lower stalks to flag leaves with a maximum increase of 34.55%, 52.65%, and 46.94%, respectively, whereas inhibited the transport of HM from flag leaves to panicle, rachis, and grains. Therefore, foliar application of DMSA reduced Cd, Pb, and As accumulation in rice grains by immobilizing HMs in flag leaves. Thus, this strategy could act as a promising agronomic measure for the remediation of mixed HM contamination in paddy fields.
اظهر المزيد [+] اقل [-]Passerine bird reproduction does not decline in a highly-contaminated mercury mining district of China
2021
Su, Tongping | He, Chao | Jiang, Aiwu | Xu, Zhidong | Goodale, Eben | Qiu, Guangle
Mercury (Hg) is a neurotoxic element with severe effects on humans and wildlife. Widely distributed by atmospheric deposition, it can also be localized near point sources such as mines. Mercury has been shown to reduce the reproduction of bird populations in field observations in North America and Europe, but studies are needed in Asia, where the majority of emissions now occur. We investigated the reproduction of two passerines, Japanese Tit (Parus minor) and Russet Sparrow (Passer rutilans), in a large-scale Hg mining district, and a non-mining district, both in Guizhou, southwest China. Concentrations of Hg were elevated in the mining district (blood levels of 2.54 ± 2.21 [SD] and 0.71 ± 0.40 μg/g, in adult tits and sparrows, respectively). However, we saw no evidence of decreased breeding there: metrics such as egg volume, nestling weight, hatching and fledgling success, were all similar between the different districts across two breeding seasons. Nor were there correlations at the mining district between Hg levels of adults or juveniles, and hatching or fledgling success, or nestling weight. Nest success was high even in the mining district (tit, 64.0%; sparrow: 83.1%). This lack of reproductive decline may be related to lower blood levels in nestlings (means < 0.15 μg/g for both species). Concentrations of selenium (Se), and Se-to-Hg molar ratio, were also not correlated to breeding success. Although blood levels of 3.0 μg/g have been considered as a threshold of adverse effects in birds, even leading to severe effects, we detected no population-level reproductive effects, despite ~25% of the adult tits being above this level. Future work should investigate different locations in the mining district, different life-stages of the birds, and a wider variety of species. The hypothesis that bird populations can evolve resistance to Hg in contaminated areas should also be examined further.
اظهر المزيد [+] اقل [-]Understanding the spatiotemporal pollution dynamics of highly fragile montane watersheds of Kashmir Himalaya, India
2021
Bhat, Sami Ullah | Khanday, Shabir A. | Islam, Sheikh Tajamul | Sabha, Inam
Pollution of riverine ecosystems through the multidimensional impact of human footprints around the world poses a serious challenge. Research studies that communicate potential repercussions of landscape structure metrics on snowmelt riverine water quality particularly, in climatically fragile Himalayan watersheds are very scarce. Though, worldwide, grasping the influence of land-use practices on water quality (WQ) has received renewed attention yet, the relevance of spatial scale linked to landscape pattern is still elusive due to its heterogenic nature across diverse geomorphic regions. In this work, therefore, we tried to capture the insights on landscape-aquascape interface by juxtapositioning the impacts of landscape structure pattern on snowmelt stream WQ of the whole Jhelum River Basin (JRB) under three varying spatial scales viz., watershed scale, riparian corridor (1000 m wide) and reach buffer (500 m wide). The percentage of landscape pattern composition and configuration metrics in the JRB were computed in GIS utilizing Landsat-8 OLI/TIRS satellite image having 30 m resolution. To better explicate the influence of land-use metrics on riverine WQ with space and time, we used Redundancy analysis (RDA) and multilinear regression (MLR) modeling. MLR selected land-use structure metrics revealed the varied response of WQ parameters to multi-scale factors except for total faecal coliform bacteria (TC) which showed perpetual presence. The reach-scale explained slightly better (76%) variations in WQ than riparian (75%) and watershed (70%) scales. Likewise, across seasonal scale, autumn (75%), winter (83%), and summer (77%) captured the most WQ variation at catchment, riparian, and reach scales respectively. We observed impairing WQ linkages with agriculture, built-up and barren rocky areas across watersheds, besides, pastures in riparian buffer areas, and fragmentation of landscape patches at the reach scale. Due to little appearance of spatial scale differences, a multi scale perspective landscape planning is emphasized to ensure future sustainability of Kashmir Himalayan water resources.
اظهر المزيد [+] اقل [-]Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals
2021
Yang, Shujin | Liao, Y. | Karthikeyan, K.G. | Pan, X.J.
Developing low-cost and high-performance biosorbent for water purification continues drawing more and more attention. In this study, cellulose-chitosan composite hydrogels were fabricated via a co-dissolution and regeneration process using a molten salt hydrate (a 60 wt% aqueous solution of LiBr) as a solvent. The addition of chitosan not only introduced functionality for metal adsorption but also increased the specific surface area and improved the mechanical strength of the composite hydrogel, compared to pure cellulose hydrogel. Batch adsorption experiments indicated that the composite hydrogel with 37% cellulose and 63% chitosan exhibited an adsorption capacity of 94.3 mg/g (1.49 mmol/g) toward Cu²⁺ at 23 °C, pH 5, and initial metal concentration of 1500 mg/L, which was 10 times greater than the adsorption capacity of pure cellulose hydrogel. Competitive adsorption from a mixed metals solution revealed that the cellulose-chitosan composite hydrogel exhibited selective adsorption of the metals in the order of Cu²⁺ > Zn²⁺ > Co²⁺. This study successfully demonstrated an innovative method to fabricate biosorbents from abundant and renewable natural polymers (cellulose and chitosan) for removing metal ions from water.
اظهر المزيد [+] اقل [-]Effect of microplastics on aquatic biota: A hormetic perspective
2021
Sun, Tao | Zhan, Junfei | Li, Fei | Ji, Chenglong | Wu, Huifeng
As emerging pollutants, microplastics (MPs) have been found globally in various freshwater and marine matrices. This study recompiled 270 endpoints of 3765 individuals from 43 publications, reporting the onset of enhanced biological performance and reduced oxidative stress biomarkers induced by MPs in aquatic organisms at environmentally relevant concentrations (≤1 mg/L, median = 0.1 mg/L). The stimulatory responses of consumption, growth, reproduction and survival ranged from 131% to 144% of the control, with a combined response of 136%. The overall inhibitory response of 9 oxidative stress biomarkers was 71% of the control, and commonly below 75%. The random-effects meta-regression indicated that the extents of MPs-induced responses were independent of habitat, MP composition, morphology, particle size and exposure duration. The results implied that the exposure to MPs at low and high concentrations might induce opposite/non-monotonic responses in aquatic biota. Correspondingly, the hormetic dose response relationships were found at various endpoints, such as reproduction, genotoxicity, immunotoxicity, neurotoxicity and behavioral alteration. Hormesis offers a novel perspective for understanding the dose response mode of aquatic organisms exposed to low and high concentrations of MPs, highlighting the necessity to incorporate the hormetic dose response model into the ecological/environmental risk assessment of MPs.
اظهر المزيد [+] اقل [-]Spatial patterning of chlorophyll a and water-quality measurements for determining environmental thresholds for local eutrophication in the Nakdong River basin
2021
Kim, Hyo Gyeom | Hong, Sungwon | Chon, Tae Soo | Joo, Gea-Jae
Management of water-quality in a river ecosystem needs to be focused on susceptible regions to eutrophication based on proper measurements. The stress–response relationships between nutrients and primary productivity of phytoplankton allow the derivation of ecologically acceptable thresholds of stressors under field conditions. However, spatio-temporal variations in heterogeneous environmental conditions have hindered the development of locally applicable criteria. To address these issues, we utilized a combination of a geographically specialized artificial neural network (Geo-SOM, geo-self-organizing map) and linear mixed-effect models (LMMs). The model was applied to a 24-month dataset of 54 stations that spanned a wide spatial gradient in the Nakdong River basin. The Geo-SOM classified 1286 observations in the basin into 13 clusters that were regionally and seasonally distinct. Inclusion of the random effects of Geo-SOM clustering improved the performance of each LMM, which suggests that there were significant spatio-temporal variations in the Chla–stressor relationships. These variations arise owing to differences in background seasonality and the effects of local pollutant variables and land-use patterns. Among the 16 environmental variables, the major stressors for Chla were total phosphate (TP) as a nutrient and biological oxygen demand (BOD) as a non-nutrient according to the results of both Geo-SOM and LMM analyses. Based on LMMs with the random effect of the Geo-SOM clusters on the intercept and the slope, we can propose recommended thresholds for TP (18.5 μg L⁻¹) and BOD (1.6 mg L⁻¹) in the Nakdong River. The combined method of LMM and Geo-SOM will be useful in guiding appropriate local water-quality-management strategies and in the global development of large-scale nutrient criteria.
اظهر المزيد [+] اقل [-]Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process
2021
Beiyuan, Jingzi | Fang, Linchuan | Chen, Hansong | Li, Mengdi | Liu, Dongdong | Wang, Yunqiang
(S,S)-ethylenediaminedisuccinic acid (EDDS) has a strong capacity to mobilize potentially toxic elements (PTEs) in phytoextraction. It can release NH₄⁺-N via biodegradation, which can enhance N supply to soil thereafter promote plant growth and plant resistance to PTEs. However, the advanced feature of released N in the EDDS-enhanced phytoextraction remains unclear. In the current study, the effects of N supply released from EDDS on ryegrass phytoextraction and plant resistance to PTEs were investigated in detail by a comparison with urea. Our results supported that the addition of both EDDS and urea increased N concentration in soil solution, yet EDDS needed more time to release available N for plant uptake and transported more N from root to shoot. Additionally, EDDS significantly increased the concentration of all targeted PTEs, i.e. Cu, Zn, Cd, and Pb, in the soil solution, which results in higher levels of their occurrence in plant biomass compared with urea. By contrast, the supply of N slightly enhanced the ryegrass uptake of micro-nutrients, i.e. Cu and Zn, yet it caused negligible effects on nonessential elements, i.e. Cd and Pb. The mobilized PTEs by EDDS lead to elevated oxidative stress because higher levels of malondialdehyde and O₂•⁻ were observed. The supply of N attenuated oxidative stress caused by O₂•⁻ and H₂O₂, which was associated with enhanced activities of superoxide dismutase and peroxidase. Our results advanced the understanding of the exogenous N supply and metal resistance mechanisms in the EDDS-enhanced phytoextraction. This study also highlighted that EDDS can serve as a N source to ease N-deficient problems in PTEs-contaminated soils.
اظهر المزيد [+] اقل [-]Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater
2021
Abbas, Tauqeer | Wadhawan, Tanush | Khan, Asad | McEvoy, John | Khan, Eakalak
The feasibility and effectiveness of iron turning waste as low cost and sustainable permeable reactive barrier (PRB) media for remediating dieldrin, endrin, dichlorodiphenyltrichloroethane (DDT), and lindane individually (batch system) and combined (continuous flow column) in water were investigated. After 10 min of reaction in a batch system, removal of endrin, dieldrin, and DDT was higher (86–91 %) than lindane (41 %) using 1 g of iron turning waste in 200 mL of pesticide solution (20 μg/L for each pesticide). Among the studied pesticides, only lindane removal decreased substantially in the presence of nitrate (37 %) and magnesium (18 %). Acidic water environment (pH = 4) favored the pesticide removal than neutral and basic environments. For the column experiments, sand alone as PRB media was ineffective for remediating the pesticides in water. When only iron turning was used, the removal efficiencies of lindane, endrin, and dieldrin were 83–88 % and remained stable during 60 min of the experiments. DDT removal was less than other pesticides (58 %). Sandwiching the iron turning waste media between two sand layers improved DDT removal (79 %) as well as limited the iron content below a permissible level in product water. In a long-term PRB column performance evaluation, iron turning waste (150 g) removed all pesticides in water (initial concentration of each pesticide = 2 μg/L) effectively (≥94 %) at a hydraulic retention time of 1.6 h. Iron turning waste, which was mainly in the form of zerovalent iron (Fe⁰), was oxidized to ferrous (Fe²⁺) and ferric (Fe³⁺) iron during its reaction with pesticides, and electrons donated by Fe⁰ and Fe²⁺ were responsible for complete dechlorination of all the pesticides. Therefore, it can be used as inexpensive and sustainable PRB media for groundwater remediation especially in developing countries where groundwater contamination with pesticides is more prevalent.
اظهر المزيد [+] اقل [-]