خيارات البحث
النتائج 3211 - 3220 من 4,033
Use of fallout radionuclides (7Be, 210Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment
2016
Ribolzi, Olivier | Evrard, Olivier | Huon, Sylvain | Rochelle-Newall, Emma | Henri-des-Tureaux, Thierry | Silvera, Norbert | Thammahacksac, Chanthamousone | Sengtaheuanghoung, Oloth
Consumption of water polluted by faecal contaminants is responsible for 2 million deaths annually, most of which occur in developing countries without adequate sanitation. In tropical aquatic systems, streambeds can be reservoirs of persistent pathogenic bacteria and high rainfall can lead to contaminated soils entering streams and to the resuspension of sediment-bound microbes in the streambed. Here, we present a novel method using fallout radionuclides (⁷Be and ²¹⁰Pbₓₛ) to estimate the proportions of Escherichia coli, an indicator of faecal contamination, associated with recently eroded soil particles and with the resuspension of streambed sediments. We show that using these radionuclides and hydrograph separations we are able to characterize the proportion of particles originating from highly contaminated soils and that from the resuspension of particle-attached bacteria within the streambed. We also found that although overland flow represented just over one tenth of the total flood volume, it was responsible for more than two thirds of the downstream transfer of E. coli. We propose that data obtained using this method can be used to understand the dynamics of faecal indicator bacteria (FIB) in streams thereby providing information for adapted management plans that reduce the health risks to local populations. Graphical Abstract Graphical abstract showing (1) the main water flow processes (i.e. overland flow, groundwater return flow, blue arrows) and sediment flow components (i.e. resuspension and soil erosion, black arrows) during floods in the Houay Pano catchment; (2) the general principle of the method using fallout radionuclide markers (i.e. ⁷Be and ²¹⁰Pbₓₛ) to estimate E. coli load from the two main sources (i.e. streambed resuspension vs soil surface washoff); and 3) the main results obtained during the 15 May 2012 storm event (i.e. relative percentage contribution of each process to the total streamflow, values in parentheses)
اظهر المزيد [+] اقل [-]Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite
2016
Danish, Muhammad | Gu, Xiaogang | Lu, Shuguang | Naqvi, Muhammad
Chlorinated organic solvents (COSs) are extensively detected in contaminated soil and groundwater that pose long-term threats to human life and environment. In order to degrade COSs effectively, a novel catalytic composite of natural zeolite-supported nano zero valent iron (Z-nZVI) was synthesized in this study. The performance of Z-nZVI-catalyzed sodium percarbonate (SPC) in a heterogeneous Fenton-like system was investigated for the degradation of COSs such as 1,1,1-trichloroethane (1,1,1-TCA) and trichloroethylene (TCE). The surface characteristics and morphology of the Z-nZVI composite were tested using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Total pore volume, specific surface area, and pore size of the natural zeolite and the Z-nZVI composite were measured using Brunauer-Emmett-Teller (BET) method. SEM and TEM analysis showed significant elimination of aggregation and well dispersion of iron nano particles on the framework of natural zeolite. The BET N₂ measurement analysis indicated that the surface area of the Z-nZVI composite was 72.3 m²/g, much larger than that of the natural zeolite (0.61 m²/g). For the contaminant analysis, the samples were extracted with n-hexane and analyzed through gas chromatograph. The degradation of 1,1,1-TCA and TCE in the Z-nZVI-catalyzed percarbonate system were 48 and 39 % respectively, while strong augmentation was observed up to 83 and 99 %, respectively, by adding the reducing agent (RA), hydroxyl amine (NH₂OH•HCl). Probe tests validated the presence of OH● and O₂ ●– which were responsible for 1,1,1-TCA and TCE degradation, whereas both free radicals were strengthened with the addition of RA. In conclusion, the Z-nZVI/SPC oxidation with reducing agent shows potential technique for degradation of groundwater contaminated by 1,1,1-TCA and TCE.
اظهر المزيد [+] اقل [-]Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione
2016
Daud, M. K. | Mei, Lei | Azizullah, Azizullah | Dawood, Muhammad | Ali, Imran | Mahmood, Qaisar | Ullah, Waheed | Jamīl, Muḥammad | Zhu, S. J.
Cadmium (Cd) pollution is present in the world over especially in the industrialized parts of the world. To reduce Cd accumulation in various crops especially food crops, alleviating agents such as reduced glutathione (GSH) can be applied, which are capable either to exclude or to sequester Cd contamination. This study investigated the leaf-based spatial distribution of physiological, metabolic, and microstructural changes in two cotton cultivars (Coker 312 and TM-1) under GSH-mediated Cd stress using single levels of Cd (50 μM) and GSH (50 μM) both separately and in mix along with control. Results showed that GSH revived the morphology and physiology of both cotton cultivars alone or in mix with Cd. Cd uptake was enhanced in all segments of leaf and whole leaf upon the addition of GSH. GSH alleviated Cd-induced reduction in the photosynthetic pigment compositions and chlorophyll a fluorescence parameters. Mean data of biomarkers (2,3,5-triphenyltetrazolium (TTC), total soluble protein (TSP), malondialdehyde (MDA), hydrogen peroxide (H₂O₂)) revealed the adverse effects of Cd stress on leaf segments of both cultivars, which were revived by GSH. The oxidative metabolism induced by Cd stress was profoundly influenced by exogenous GSH application. The microstructural alterations were mainly confined to chloroplastic regions of leaves under Cd-stressed conditions, which were greatly revived upon the GSH addition. As a whole, Cd stress greatly affected TM-1 as compared to Coker 312. These results suggest a positive role of GSH in alleviating Cd-mediated changes in different leaf sections of cotton cultivars.
اظهر المزيد [+] اقل [-]Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors
2016
Chen, Ran | Luo, Yi-Hao | Chen, Jia-Xian | Zhang, Yin | Wen, Li-Lian | Shi, Ling-Dong | Tang, Youneng | Rittmann, Bruce E. | Zheng, Ping | Zhao, He-Ping
Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm’s microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH₄-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO₃ ⁻ to NO₂ ⁻ or N₂O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO₃ ⁻. Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO₃ ⁻ or ClO₄ ⁻ directly. Graphical Abstract ᅟ
اظهر المزيد [+] اقل [-]Spatial distribution, health risk assessment, and isotopic composition of lead contamination of street dusts in different functional areas of Beijing, China
2016
Han, Lanfang | Gao, Bo | Wei, Xin | Xu, Dongyu | Gao, Li
Street dusts from heavy density traffic area (HDTA), tourism area (TA), residential area (RA), and educational area (EA) in Beijing were collected to explore the distribution, health risk assessment, and source of lead (Pb). The average concentration of Pb in TA was the highest among the four areas. Compared with other cities, Pb concentrations in Beijing were generally at moderate or low levels. The average value (14.05) of ecological risk index (RI) indicated that Pb was at “low pollution risk” status. According to the calculation on hazard index (HI), the ingestion of dust particles of children and adults was the major route of exposure to street dusts in four studied areas, followed by dermal contact. The lower values of HI than 1 further suggested that non-carcinogenic risks of Pb in the street dusts were in the low range. Comparing ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁸Pb/²⁰⁷Pb ratios of street dusts with other environmental samples, it was found that atmospheric deposition of coal combustion dust might be the main pathway for anthropogenic Pb input to the street dusts in four functional areas.
اظهر المزيد [+] اقل [-]A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective
2016
Zhang, Yunlin | Yao, Xiaolong | Qin, Boqiang
Lake Taihu, as the important drinking water source of the Yangtze River Delta urban agglomeration and the third largest freshwater lake in China, has experienced serious lake eutrophication and water quality deterioration in the past three decades. Growing scientific, political, and public attention has been given to the water quality of Lake Taihu. This study aimed to conduct a comparative quantitative and qualitative analysis of the development, current hotspots, and future directions of Lake Taihu research using a bibliometric analysis of eight well-studied lakes (Lake Taihu, Lake Baikal, Lake Biwa, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior and Lake Victoria) around the world based on the Science Citation Index (SCI) database. A total of 1582 papers discussing Lake Taihu research were published in 322 journals in the past three decades. However, the first paper about Lake Taihu research was not found in the SCI database until 1989, and there were only zero, one, or two papers each year from 1989 to 1995. There had been rapid development in Lake Taihu research since 1996 and a sharp increase in papers since 2005. A keyword analysis showed that “sediment,” “eutrophication”, “Microcystis aeruginosa”, “cyanobacterial blooms”, and “remote sensing” were the most frequently used keywords of the study subject. Owing to its significant impact on aquatic ecosystems, a crucial emphasis has been placed on climate change recently. In addition, the future focuses of research directions, including (1) environmental effects of physical processes; (2) nutrient cycles and control and ecosystem responses; (3) cyanobacteria bloom monitoring, causes, forecast and management; (4) eutrophication and climate change interactions; and (5) ecosystem degradation mechanism and ecological practice of lake restoration, are presented based on the keyword analysis. Through multidisciplinary fields (physics, chemistry, and biology) cross and synthesis study of Lake Taihu, the development of shallow lake limnology will be largely promoted.
اظهر المزيد [+] اقل [-]Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution
2016
Zawadzki, Krzysztof | Samecka-Cymerman, Aleksandra | Kolon, Krzysztof | Wojtuń, Bronisław | Mróz, Lucyna | Kempers, Alexander J.
Metals deposited into ecosystems are non-degradable and become one of the major toxic agents which accumulate in habitats. Thus, their concentration requires precise monitoring. To evaluate pollution around a chlor-alkali plant, a glass smelter, two power plants and a ceramic and porcelain factory, we selected terrestrial mosses with different life forms: the orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. Metal concentrations were determined in both species growing together at sites situated at various distances approximately 0.75, 1.5, 3 and 6 km from polluters. MARS analysis evaluated different tendencies of both species for Cd, Co and Pb accumulation depending on the distance from the emitter. In P. schreberi, the concentration of these metals diminished relatively rapidly with an increasing distance from the emitter up to 3000 m and then stabilised. For P. commune, a steady decrease could be observed with increasing the distance up to 6000 m. PCCA ordination explained that both species from the vicinity of the chlor-alkali plant were correlated with the highest Co, Cr, Cu, Fe and Pb as well as Mn and Ni concentrations in their tissues. The mosses from sites closest to both power plants were correlated with the highest Cd and Zn concentrations. P. commune contained significantly higher Cd, Cr, Ni, Pb and Zn concentrations compared to P. schreberi. This may be caused by the lamellae found in the leaves of P. commune which increase the surface area of the possible aerial absorption of contaminants. Soil may also be an additional source of metals, and it affects the uptake in endohydric P. commune more than in ectohydric P. schreberi. However, the precise explanation of these relations needs further investigation.
اظهر المزيد [+] اقل [-]Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season
2016
Chen, Xiaofeng | Shen, Zhenyao | Yang, Ye
The interaction between a river and the sea results in a turbidity maximum zone (TMZ) within the estuary, which has a great impact on the local ecosystem. In the Yangtze River Estuary, the magnitude and extent of the TMZ vary with water discharge. In this study, the cumulative human activity altered the water discharge regime from the river to the estuary. In the post-Three Gorges Dam (TGD) period, water discharge increased by 35.10 % at Datong in February compared with that in the pre-TGD period. The effects of water discharge variation on the characteristics of the TMZ were analyzed during spring and neap tidal periods using the three-dimensional environmental fluid dynamic code (EFDC) model. The area of the TMZ decreased by 3.11 and 17.39 % during neap and spring tides, respectively. In addition, the upper limit of the TMZ moved 11.68 km seaward during neap tide, whereas the upper limit of the TMZ in the upstream and downstream areas moved seaward 9.65 and 2.34 km, respectively, during spring tide. These findings suggest that the area and location of the TMZ are more sensitive to upstream runoff during spring tide than during neap tide. These changes in the TMZ will impact the biochemical processes in the Yangtze River Estuary. In the foreseeable future, the distribution characteristic of TMZ will inevitably change due to variations in the Yangtze River discharge resulting from new human activities (i.e., new dams), which are being constructed upstream in the Yangtze River system.
اظهر المزيد [+] اقل [-]Evaluation of atrazine degradation applied to different energy systems
2016
Moreira, Ailton J. | Pinheiro, Bianca S. | Araújo, André F. | Freschi, Gian P. G.
Atrazine is an herbicide widely used in crops and has drawn attention due to potential pollution present in soil, sediment, water, and food. Since conventional methods are not potentially efficient to persistent degradation of organic compounds, new technology has been developed to remove them, especially practices utilizing advanced oxidation processes (AOPs). This work aims to evaluate the use of different energies (ultraviolet (UV), microwaves (MW), and radiations (MW-UV)) to the herbicide atrazine through the process of photo-oxidation. These systems found degradation rates of around 12 % (UV), 28 % (MW), and 83 % (MW-UV), respectively, with time intervals of 120 s. After the photolytic processes, the samples were analyzed at a wavelength scanning the range of 190 to 300 nm, where the spectral analysis of the signal was used to evaluate the degradation of atrazine and the appearance of some other peaks (degradation products). The spectrum evaluation resulting from photolytic processes gave rise to a new signal which was confirmed by chromatography. This spectrum indicated the possible pathway of atrazine degradation by the process of photolytic MW-UV, generating atrazine-2-hydroxy, atrazine-desethyl-2-hidroxy, and atrazine-desisopropyl-2-hydroxy. The process indicated that in all situations, chloride was present in the analytic structure and was substituted by a hydroxyl group, which lowered the toxicity of the compound through the photolytic process MW-UV. Chromatographic analysis ascertained these preliminary assessments using spectrophotometry. It was also significantly observed that the process can be optimized by adjusting the pH of the solution, which was evident by an improvement of 10 % in the rate of degradation when subjected to a pH solution equal to 8.37.
اظهر المزيد [+] اقل [-]Estimating internal P loading in a deep water reservoir of northern China using three different methods
2016
Qin, Lihuan | Zeng, Qinghui | Zhang, Wangshou | Li, Xuyong | Steinman, Alan D. | Du, Xinzhong
Much attention had been paid to reducing external loading of nutrients to improve water quality, while internal loading from sediment, which has been largely neglected, is also an important source for water eutrophication. The internal load in deep lakes or reservoirs is not easy to be detected and be quantified. In this study, three different methods (mass balance method, Fick’s law, and regression equation) were combined to calculate the gross or/and net P release from sediment using limited data. Our results indicated that (1) the methods of mass balance and regression equation give similar results of sediment P release rate, with values of 0.889 and 0.902 mg m² d⁻¹, respectively, while the result of Fick’s law was much lower (0.400 mg m² d⁻¹); (2) Hot periods of sediment releasing were suggested to occur from March to April and from August to September, which correspond to periods of high risks of algae blooms. The remaining months of the year were shown as net nutrient retention; (3) for the whole region, Baihedam and Chaohekuqu were identified as zones with a higher possibility to release P from sediment. (4) P loading to the Miyun Reservoir was greater in the inflow than in the outflow, suggesting a portion of the inflow P load was retained in the water or sediment; hence, release of sediment P may continue to be a major source of phosphorus in the future.
اظهر المزيد [+] اقل [-]