خيارات البحث
النتائج 331 - 340 من 5,153
The influence of lifestyle on airborne particle surface area doses received by different Western populations النص الكامل
2018
Pacitto, A. | Stabile, L. | Moreno, T. | Kumar, P. | Wierzbicka, A. | Morawska, L. | Buonanno, G.
In the present study, the daily dose in terms of particle surface area received by citizens living in five cities in Western countries, characterized by different lifestyle, culture, climate and built-up environment, was evaluated and compared. For this purpose, the exposure to sub-micron particle concentration levels of the population living in Barcelona (Spain), Cassino (Italy), Guilford (United Kingdom), Lund (Sweden), and Brisbane (Australia) was measured through a direct exposure assessment approach. In particular, measurements of the exposure at a personal scale were performed by volunteers (15 per each population) that used a personal particle counter for different days in order to obtain exposure data in microenvironments/activities they resided/performed. Non-smoking volunteers performing non-industrial jobs were considered in the study.Particle concentration data allowed obtaining the exposure of the population living in each city. Such data were combined in a Monte Carlo method with the time activity pattern data characteristics of each population and inhalation rate to obtain the most probable daily dose in term of particle surface area as a function of the population gender, age, and nationality.The highest daily dose was estimated for citizens living in Cassino and Guilford (>1000 mm²), whereas the lowest value was recognized for Lund citizens (around 100 mm²). Indoor air quality, and in particular cooking and eating activities, was recognized as the main influencing factor in terms of exposure (and thus dose) of the population: then confirming that lifestyle (e.g. time spent in cooking activities) strongly affect the daily dose of the population. On the contrary, a minor or negligible contribution of the outdoor microenvironments was documented.
اظهر المزيد [+] اقل [-]Can nano-SiO2 reduce the phytotoxicity of acetaminophen? – A physiological, biochemical and molecular approach النص الكامل
2018
Soares, Cristiano | Branco-Neves, Simão | de Sousa, Alexandra | Teixeira, Jorge | Pereira, Ruth | Fidalgo, Fernanda
This study aimed at evaluating the interactive effects of acetaminophen (AC; 400 mg kg−1) and silicon dioxide nanomaterial (nano-SiO2;3 mg kg−1) on soil-grown barley. After 14 days of growth, plant growth, evaluated in terms of fresh and dry weight, was greatly inhibited by AC, independently of being or not co-treated with nano-SiO2. Plants growing under high levels of AC did not show any increase in malondialdehyde (MDA) nor thiols contents, though levels of superoxide anion (O2.-) and hydrogen peroxide (H2O2) were increased in leaves and roots, respectively. When plants were co-treated with nano-SiO2, reactive oxygen species (ROS) content remained unchanged, but lipid peroxidation (LP) was diminished and the thiol redox network was up-regulated in roots. The evaluation of the response of the antioxidant system showed that AC affected both non-enzymatic and enzymatic components in an organ-specific manner: proline levels and superoxide dismutase (SOD) activity were enhanced, whilst catalase (CAT) activity decreased in leaves; ascorbate content and CAT activity were diminished in roots. In response to the nano-SiO2 co-treatment, this pattern was not vastly altered, despite for ascorbate peroxidase (APX), whose activity was greatly enhanced in both organs. Overall, combining biometric, biochemical and molecular approaches, this study revealed that, although AC impaired plant growth and development, it did not trigger a harsh oxidative stress condition. Maybe by this reason, the ameliorating potential of nano-SiO2 was not so evident; yet, nano-SiO2 was able to reduce LP and to stimulate thiol content and APX activity, possibly as a defense mechanism against AC-induced stress.
اظهر المزيد [+] اقل [-]Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron النص الكامل
2018
Wu, Bin | Peng, Dinghua | Hou, Siyu | Tang, Bicong | Wang, Can | Xu, Heng
In this study, the dynamic Cr(VI) removal process from water by the synthesized multilayer material coated nanoscale zerovalent iron (SBC-nZVI) was systematically discussed at different treatment conditions. The results showed that initial pH, contact time, Cr(VI) concentration and the dosage of SBC-nZVI were important parameters that influenced the Cr(VI) removal efficiency. The major Cr(VI) removal occurred within 60 min and gradually tend to equilibrium with consistent treatment. The removal efficiency was highly depended on pH values and the adsorption kinetics agreed well with the pseduo-second-order model (PSO). When the initial Cr(VI) concentration was below 15 mg/L, the removal rate could reach to about 100%. Moreover, the removal efficiency increased with the increase of SBC-nZVI dosage, which related to the increase of reactive sites. To understand the removal mechanism, SBC-nZVI before and after reaction with Cr(VI) were characterized by fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). These analysis showed that the interaction of SBC-nZVI with Cr(VI) was mainly controlled by reduction and electrostatic attraction. Therefore, these results explained the interaction between Cr(VI) and SBC-nZVI material in detail, and further proved that SBC-nZVI could be an effective material to remove Cr(VI) from water.
اظهر المزيد [+] اقل [-]Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants النص الكامل
2018
Yuan, Qi | Lai, Senchao | Song, Junwei | Ding, Xiang | Zheng, Lishan | Wang, Xinming | Zhao, Yan | Zheng, Junyu | Yue, Dingli | Zhong, Liuju | Niu, Xiaojun | Zhang, Yingyi
Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOAI), monoterpenes (SOAM), sesquiterpenes (SOAS) and aromatics (SOAA) in fine particulate matter (PM2.5) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOAI, SOAM and SOAS tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOAA tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOAI formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOAM and SOAS formation in summer rather than in other seasons. The influence of atmospheric oxidants (Ox) was found to be an important factor of the formation of SOAM tracers during the enhancement periods in autumn and winter. The formation of SOAS tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and Ox as well as [NO2][O3] suggest the involvement of both ozone (O3) and nitrogen dioxide (NO2) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes.
اظهر المزيد [+] اقل [-]The environmental contaminant tributyltin leads to abnormalities in different levels of the hypothalamus-pituitary-thyroid axis in female rats النص الكامل
2018
Andrade, Marcelle Novaes | Santos-Silva, Ana Paula | Rodrigues-Pereira, Paula | Paiva-Melo, Francisca Diana | de Lima Junior, Niedson Correa | Teixeira, Mariana Pires | Soares, Paula | Dias, Glaecir Roseni Munstock | Graceli, Jones Bernardes | de Carvalho, Denise Pires | Ferreira, Andrea Claudia Freitas | Miranda-Alves, Leandro
Tributyltin is a biocide used in nautical paints, aiming to reduce fouling of barnacles in ships. Despite the fact that many effects of TBT on marine species are known, studies in mammals have been limited, especially those evaluating its effect on the function of the hypothalamus-pituitary-thyroid (HPT) axis. The aim of this study was to investigate the effects of subchronic exposure to TBT on the HPT axis in female rats. Female Wistar rats received vehicle, TBT 200 ng kg−1 BW d−1 or 1000 ng kg−1 BW d−1 orally by gavage for 40 d. Hypothalamus, pituitary, thyroid, liver and blood samples were collected. TBT200 and TBT1000 thyroids showed vacuolated follicular cells, with follicular hypertrophy and hyperplasia. An increase in epithelial height and a decrease in the thyroid follicle and colloid area were observed in TBT1000 rats. Moreover, an increase in the epithelium/colloid area ratio was observed in both TBT groups. Lower TRH mRNA expression was observed in the hypothalami of TBT200 and TBT1000 rats. An increase in Dio1 mRNA levels was observed in the hypothalamus and thyroid in TBT1000 rats only. TSH serum levels were increased in TBT200 rats. In TBT1000 rats, there was a decrease in total T4 serum levels compared to control rats, whereas T3 serum levels did not show significant alterations. We conclude that TBT exposure can promote critical abnormalities in the HPT axis, including changes in TRH mRNA expression and serum TSH and T4 levels, in addition to affecting thyroid morphology. These findings demonstrate that TBT disrupts the HPT axis. Additionally, the changes found in thyroid hormones suggest that TBT may interfere with the peripheral metabolism of these hormones, an idea corroborated by the observed changes in Dio1 mRNA levels. Therefore, TBT exposition might interfere not only with the thyroid axis but also with thyroid hormone metabolism.
اظهر المزيد [+] اقل [-]Trace elements bioaccumulation in liver and fur of Myotis myotis from two caves of the eastern side of Sicily (Italy): A comparison between a control and a polluted area النص الكامل
2018
Ferrante, Margherita | Spena, Maria Teresa | Hernout, Béatrice Veronique | Grasso, Alfina | Messina, Andrea | Grasso, Rosario | Agnelli, Paolo | Brundo, Maria Violetta | Copat, Chiara
Environmental pollution is a topic of great interest because it directly affects the quality of ecosystems and of all living organisms at different trophic and systematic levels. Together with the global climate change, the long-term surviving of many species of plants and animals is threaten, distributional patterns at global and regional levels are altered and it results in local assemblages of species that are quite different from those that currently constitute coevolved communities. .For this study, the species Myotis myotis was used as bioindicator and it was sampled from two caves in the south-east of Sicily, Pipistrelli chosen as control area and Palombara chosen as polluted area, to measure the concentrations of trace elements in fur and liver tissues. Results showed higher content of essential elements in fur in bats sampled from Pipistrelli. Conversely, higher concentrations of toxic metals in liver such as As, Cd, Pb and Hg were measured in bat samples in Palombara cave, where specimens have a hunting area extended within the boundaries of the petrochemical plant. Nevertheless, we cannot consider Palombara population as polluted by metal contamination since their tissue concentrations are overall lower than toxic thresholds values suggested for small mammals. Likewise, we cannot exclude other kind of pollutants as potential stressors of the examined population, contributing with the decreasing of bat colonies in Sicily.
اظهر المزيد [+] اقل [-]Uptake, elimination and biotransformation of N-ethyl perfluorooctane sulfonamide (N-EtFOSA) by the earthworms (Eisenia fetida) after in vivo and in vitro exposure النص الكامل
2018
Zhao, Shuyan | Wang, Bohui | Zhu, Lingyan | Liang, Tiankun | Chen, Meng | Yang, Liping | Lv, Jingping | Liu, Lifen
N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is commonly known as the active ingredient of sulfluramid. It can be degraded to perfluorooctane sulfonic acid (PFOS) in biota and environment. Earthworms (Eisenia fetida) were exposed with N-EtFOSA to examine the bioaccumulation, elimination and metabolism of N-EtFOSA by the earthworms after in vivo and in vitro exposure. N-EtFOSA could be biodegraded in quartz sands to perfluorooctane sulfonamide (FOSA) and PFOS. In the in vivo tests, in addition to parent N-EtFOSA, three metabolites, including perfluorooctane sulfonamide acetate (FOSAA), FOSA and PFOS also accumulated in earthworms as a result of N-EtFOSA biotransformation, with FOSA as the predominant metabolite. The bioaccumulation factor (BAF) and uptake rate coefficient (ku) of N-EtFOSA from sand were 20.4 and 2.41·d−1, respectively. The elimination rate constants (ke) decreased in the order FOSAA (0.130·d−1) > N-EtFOSA (0.118·d−1) > FOSA (0.073·d−1) > PFOS (0.051·d−1). The biotransformation of N-EtFOSA in earthworm was further confirmed by the in vitro test involving incubation of earthworm homogenates with N-EtFOSA. This work provides evidence on the accumulation and transformation of N-EtFOSA in terrestrial invertebrates and will be helpful to explore the indirect sources of FOSA and PFOS in environmental biota.
اظهر المزيد [+] اقل [-]Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event النص الكامل
2018
Schwing, Patrick T. | Chanton, Jeffrey P. | Romero, Isabel C. | Hollander, David J. | Goddard, Ethan A. | Brooks, Gregg R. | Larson, Rebekka A.
Following the Deepwater Horizon (DWH) event in 2010, hydrocarbons were deposited on the continental slope in the northeastern Gulf of Mexico through marine oil snow sedimentation and flocculent accumulation (MOSSFA). The objective of this study was to test the hypothesis that benthic foraminiferal δ13C would record this depositional event. From December 2010 to August 2014, a time-series of sediment cores was collected at two impacted sites and one control site in the northeastern Gulf of Mexico. Short-lived radioisotopes (210Pb and 234Th) were employed to establish the pre-DWH, DWH, and post-DWH intervals. Benthic foraminifera (Cibicidoides spp. and Uvigerina spp.) were isolated from these intervals for δ13C measurement. A modest (0.2–0.4‰), but persistent δ13C depletion in the DWH intervals of impacted sites was observed over a two-year period. This difference was significantly beyond the pre-DWH (background) variability and demonstrated that benthic foraminiferal calcite recorded the depositional event. The longevity of the depletion in the δ13C record suggested that benthic foraminifera may have recorded the change in organic matter caused by MOSSFA from 2010 to 2012. These findings have implications for assessing the subsurface spatial distribution of the DWH MOSSFA event.
اظهر المزيد [+] اقل [-]Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach النص الكامل
2018
Hu, Wenyou | Wang, Huifeng | Dong, Lurui | Huang, Biao | Borggaard, Ole K. | Bruun Hansen, Hans Christian | He, Yue | Holm, Peter E.
Intensive human activities, in particular agricultural and industrial production have led to heavy metal accumulation in the peri-urban agricultural soils of China threatening soil environmental quality and agricultural product security. A combination of spatial analysis (SA), Pb isotope ratio analysis (IRA), input fluxes analysis (IFA), and positive matrix factorization (PMF) model was successfully used to assess the status and sources of heavy metals in typical peri-urban agricultural soils from a rapidly developing region of China. Mean concentrations of Cd, As, Hg, Pb, Cu, Zn and Cr in surface soils (0–20 cm) were 0.31, 11.2, 0.08, 35.6, 44.8, 119.0 and 97.0 mg kg−1, respectively, exceeding the local background levels except for Hg. Spatial distribution of heavy metals revealed that agricultural activities have significant influence on heavy metal accumulation in the surface soils. Isotope ratio analysis suggested that fertilization along with atmospheric deposition were the major sources of heavy metal accumulation in the soils. Based on the PMF model, the relative contribution rates of the heavy metals due to fertilizer application, atmospheric deposition, industrial emission, and soil parent materials were 30.8%, 33.0%, 25.4% and 10.8%, respectively, demonstrating that anthropogenic activities had significantly higher contribution than natural sources. This study provides a reliable and robust approach for heavy metals source apportionment in this particular peri-urban area with a clear potential for future application in other regions.
اظهر المزيد [+] اقل [-]Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring النص الكامل
2018
Hurem, Selma | Martín, Leonardo Martín | Lindeman, Leif | Brede, Dag Anders | Salbu, Brit | Lyche, Jan Ludvig | Aleström, Peter | Kamstra, Jorke H.
Ionizing radiation causes a variety of effects, including DNA damage associated to cancers. However, the effects in progeny from irradiated parents is not well documented. Using zebrafish as a model, we previously found that parental exposure to ionizing radiation is associated with effects in offspring, such as increased hatching rates, deformities, increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 h post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy) using mRNA sequencing. One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. Interestingly, one year after exposure newly derived embryos from the 8.7 mGy/h group exhibited 2390 (67.7% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, but were oppositely regulated. Pathways could be linked to effects in adults and offspring, such as DNA damage (via Atm signaling) and reproduction (via Gnrh signaling). Comparison with gene expression analysis in directly exposed embryos indicate transferrin a and cytochrome P450 2x6 as possible biomarkers for radiation response in zebrafish. Our results indicate latent effects following ionizing radiation exposure from the lower dose in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations.
اظهر المزيد [+] اقل [-]