خيارات البحث
النتائج 341 - 350 من 7,979
Seasonal occurrence, allocation and ecological risk of organophosphate esters in a typical urbanized semi-closed bay
2021
Wu, Tingting | Mao, Lulu | Liu, Xitao | Wang, Baodong | Lin, Chunye | Xin, Ming | He, Mengchang | Ouyang, Wei
In this study, water and sediment samples from the Jiaozhou Bay and surrounding rivers were collected to analyze the seasonal occurrence and allocation of 12 organophosphate esters (OPEs) and the associated ecological risk. The higher contamination of OPEs in the adjacent rivers indicated the impact of terrestrial input. Tris(1-chloropropan-2-yl) phosphate (TCIPP) was the predominant OPE in the four environmental sample groups investigated. The spatial distribution of OPEs in seawater varied greatly seasonally and was mainly affected by terrestrial input, with OPEs being redistributed under the influence of tidal currents. The partition coefficients (log Kₒc) of the OPEs were calculated, and their strong correlation with the log Kₒw (octanol-water) values suggested that the water-sediment allocation was significantly affected by hydrophobicity. The homologous relationships among the 7 OPEs with detection frequencies greater than 40% were identified by principal component analysis (PCA). The partial least squares regression (PLSR) model explicated that ∑OPEs cycling dynamics and principal controlling factors were dissimilar in the bay versus surrounding rivers. The risk quotient (RQ) faced by typical organisms in seawater and river water indicated that short-term OPEs exposure was safe for green algae, daphnia and fish. The organisms in rivers faced the higher ecological risk of OPEs in spring than in summer and winter. Therefore, the terrestrial transport of OPEs in spring should be controlled.
اظهر المزيد [+] اقل [-]Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review
2021
Zhang, Shu | Wang, Jiaqi | Zhang, Yue | Ma, Junzhou | Huang, Lintianyang | Yu, Shujun | Chen, Lan | Song, Gang | Qiu, Muqing | Wang, Xiangxue
Because the pollutants produced by human activities have destroyed the ecological balance of natural water environment, and caused severe impact on human life safety and environmental security. Hence the task of water environment restoration is imminent. Metal-organic frameworks (MOFs), structured from organic ligands and inorganic metal ions, are notable for their outstanding crystallinity, diverse structures, large surface areas, adsorption performance, and excellent component tunability. The water stability of MOFs is a key requisite for their possible actual applications in separation, catalysis, adsorption, and other water environment remediation areas because it is necessary to safeguard the integrity of the material structure during utilization. In this article, we comprehensively review state-of-the-art research progress on the promising potential of MOFs as excellent nanomaterials to remove contaminants from the water environment. Firstly, the fundamental characteristics and preparation methods of several typical water-stable MOFs include UiO, MIL, and ZIF are introduced. Then, the removal property and mechanism of heavy metal ions, radionuclide contaminants, drugs, and organic dyes by different MOFs were compared. Finally, the application prospect of MOFs in pollutant remediation prospected. In this review, the synthesis methods and application in water pollutant removal are explored, which provide ways toward the effective use of water-stable MOFs in materials design and environmental remediation.
اظهر المزيد [+] اقل [-]Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains
2021
Ke-tan, | Guo, Guangyu | Liu, Junrong | Zhang, Chao | Tao, Yue | Wang, Panpan | Xu, Yanhong | Chen, Lanzhou
To explore a novel strategy for the remediation of soils polluted with Cu and Cd, three strains of plant-growth-promoting rhizobacteria (PGPRs) isolated from contaminated mines and two grass species (perennial ryegrass and tall fescue) were selected in this study. The performance of PGPR strains in metal adsorption, maintaining promotion traits under stress, and ameliorating phytostabilization potential was evaluated. Cd²⁺ exerted a stronger deleterious effect on microbial growth than Cu²⁺, but the opposite occurred for grass seedlings. Adsorption experiment showed that the growing PGPR strains were able to immobilize maximum 79.49% Cu and 81.35% Cd owing to biosorption or bioaccumulation. The strains exhibited the ability to secrete indole-3-acetic acid (IAA) and dissolve phosphorus in the absence and presence of metals, and IAA production was even enhanced in the presence of low Cu²⁺ (5 mg L⁻¹). However, the siderophore-producing ability of the isolates was strongly suppressed under Cu and Cd exposure. Ryegrass was further selected for pot experiments owing to its higher germination rate and tolerance under Cu and Cd stress than fescue. Pot-experiment results revealed that PGPR addition significantly increased the shoot and root biomasses of ryegrass by 11.49%–44.50% and 43.53%–90.29% in soil co-contaminated with 800 mg Cu kg⁻¹ and 30 mg Cd kg⁻¹, respectively. Metal uptake and translocation in inoculated ryegrass significantly decreased owing to the reduced diethylenetriamine pentaacetic acid-extractable metal content and increased residual metal-fraction percentage mediated by PGPR. Interestingly, stress mitigation was observed in these inoculated plants; in particular, their malondialdehyde content and superoxide dismutase activity were even significantly lower than those of ryegrass under normal conditions. Therefore, PGPR could be a promising option to enhance the phytostabilization efficiency of Cu and Cd in heavily polluted soils.
اظهر المزيد [+] اقل [-]Through quorum sensing, Pseudomonas aeruginosa resists noble metal-based nanomaterials toxicity
2021
Li, Zhangqiang | Zhang, Yunyun | Huang, Dan | Huang, Le | Zhang, Haibo | Li, Na | Wang, Meizhen
Noble metal–based nanomaterials (NMNs), such as platinum nanoparticles (Pt@NPs) and palladium nanoparticles (Pd@NPs), are increasingly being used as antibacterial agents. However, little information is available on bacterial resistance to NMNs. In this study, owing to their oxidase-like and peroxidase-like properties, both Pt@NPs and Pd@NPs induce reactive oxygen species (ROS) and manifest antibacterial activities: 6.25 μg/mL of either Pt@NPs or Pd@NPs killed >50% of Staphylococcus aureus strain ATCC29213. However, Pseudomonas aeruginosa strain PAO1 completely resisted 12.5 μg/mL of Pt@NPs and 6.25 μg/mL of Pd@NPs. Compared to the non-NMN groups, these NMNs promoted 2–3-fold upregulation of the quorum sensing (QS) gene lasR in strain PAO1. In fact, the lasR gene upregulation induced a 1.5-fold reduction in ROS production and increased biofilm formation by 11% (Pt@NPs) and 27% (Pd@NPs) in strain PAO1. The ΔlasR mutants (lasR gene knock out in strain PAO1), became sensitive to NMNs. The survival rates of ΔlasR mutants at 12.5 μg/mL Pt@NPs and Pd@NPs treatments were only 77% and 58%, respectively. This is the first report indicating that bacteria can resist NMNs through QS. Based on these results, evaluation of the ecological risks of using NMNs as antibacterial agents is necessary.
اظهر المزيد [+] اقل [-]River contamination shapes the microbiome and antibiotic resistance in sharpbelly (Hemiculter leucisculus)
2021
Xue, Xue | Jia, Jia | Yue, Xiaoya | Guan, Yongjing | Zhu, Long | Wang, Zaizhao
Animals living in urban river systems play critical roles in the dissemination of microbiome and antibiotic resistance that poses a strong threat to public health. This study provides a comprehensive profile of microbiota and antibiotic resistance genes (ARGs) of sharpbelly (Hemiculter leucisculus) and the surrounding water from five sites along the Ba River. Results showed Proteobacteria, Firmicutes and Fusobacteria were the dominant bacteria in gut of H. leucisculus. With the aggravation of water pollution, bacterial biomass of fish gut significantly decreased and the proportion of Proteobacteria increased to become the most dominant phylum eventually. To quantify the contributions of influential factors on patterns of gut microbiome with structural equation model (SEM), water bacteria were confirmed to be the most stressors to perturb fish gut microbiome. SourceTracker model indicated that deteriorating living surroundings facilitated the invasion of water pathogens to fish gut eco-environments. Additionally, H. leucisculus gut is an important reservoir of ARGs in Ba River with relative abundance up to 9.86 × 10⁻¹/copies. Among the ARGs, tetracycline and quinolone resistance genes were detected in dominant abundance. Deterioration of external environments elicited the accumulation of ARGs in fish gut. Intestinal class I integron, environmental heavy metal residues and gut bacteria were identified as key drivers of intestinal ARGs profiles in H. leucisculus. Analysis of SEM and co-occurrence patterns between ARGs and bacterial hosts indicated that class I integron and bacterial community played vital roles in ARGs transmission through water-fish pathway. In general, this study highlighted hazards of water contamination to microbiome and ARGs in aquatic animals and provided a new perspective to better understand the bacteria and ARGs dissemination in urban river ecosystems.
اظهر المزيد [+] اقل [-]Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX
2021
Yang, Xu | Lai, Jin-long | Zhang, Yu | Luo, Xue-gang | Han, Meng-wei | Zhao, San-ping
This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.
اظهر المزيد [+] اقل [-]Tracking petrogenic hydrocarbons in lakes of the Peace-Athabasca Delta in Alberta, Canada using petroleum biomarkers
2021
Thienpont, Joshua R. | Yang, Zeyu | Hall, Roland I. | Wolfe, Brent B. | Hollebone, Bruce P. | Blais, Jules M.
The Peace-Athabasca Delta (PAD) receives a mixture of hydrocarbons from biogenic, pyrogenic, and petrogenic processes. Source apportionment in the PAD has focussed on polycyclic aromatic compounds (PACs), which are ubiquitous in the environment and susceptible to weathering. In contrast, petroleum biomarkers of terpanes, hopanes, and steranes are degradation-resistant organic compounds found uniquely in petroleum products that can identify the input and origin of petrogenic hydrocarbons (PHCs). We provide an analysis of environmentally-relevant PHCs (including n-alkanes, PACs, and petroleum biomarkers) in surficial sediments of strategically selected lakes in the Athabasca and Peace deltas and adjacent boreal uplands. Alkanes were found to be predominately biogenic in all lakes. PAC sources were identified as wood combustion in the upland boreal lakes, a mixture of petrogenic and pyrogenic combustion in two closed-drainage lakes in the Peace Delta, and predominately petrogenic in two flood-prone Athabasca Delta lakes. Using multivariate analyses, raw Alberta oil sands were identified as a potential source of PHCs to the two flood-prone lakes in the Athabasca Delta. Biomarkers of terpanes and hopanes were identified in the Peace Delta and boreal uplands, likely from bitumen and transported atmospherically. These findings validate the use of petroleum biomarkers as tracers for bituminous sands in surficial lake sediments and their potential use in paleolimnological investigations at the PAD to improve understanding of relative roles of natural and industrial processes on far-field deposition of PHCs.
اظهر المزيد [+] اقل [-]Mechanistic insight into different adsorption of norfloxacin on microplastics in simulated natural water and real surface water
2021
Zhang, Ye | Ni, Fan | He, Jinsong | Shen, Fei | Deng, Shihuai | Tian, Dong | Zhang, Yanzong | Liu, Yan | Chen, Chao | Zou, Jianmei
Microplastics (MPs) as carriers of various contaminants have attracted more attentions in water environments. However, the interactions between typical MPs and norfloxacin (NOR) in natural water environments were still not systematically studied. In this study, the adsorption of NOR onto four typical types of MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) was investigated in simulated natural water and real surface water, and the adsorption mechanisms were deeply explored to provide fundamental understandings of the MPs-NOR complicated pollution. The results showed that the kinetics of NOR onto all MPs obeyed pseudo-second-order model, and was greatly slowed down at lower temperature or higher salinity. The intrinsic structure and surface area of MPs played important roles in the adsorption behaviors of NOR on these four types of MPs. The adsorption isotherm of NOR onto all MPs could be well described by linear model, with the Kd values following the order of PVC > PS > PE > PP (i.e. 6.229–11.901 L/μg) in simulated natural water. However, in surface water the adsorption isotherms of NOR on all MPs could be well fitted by Freundlich model. For all MPs, the adsorption of NOR was quite pH-dependent due to the electrostatic interactions. Furthermore, the salinity and the presence of dissolved organic matter (DOM) had significantly hindered the NOR adsorption. More importantly, compared with adsorption behaviors in simulated natural water, the competition of coexisting substances such as cations and NOM for adsorption sites and higher water pH dramatically reduced the adsorption of NOR onto all types of MPs in Jiang'an River, with the reduction rate of 19.7–41.2%. Finally, the mechanism studies indicated that the electrostatic attractions played a key role in the adsorption of NOR onto MPs, and π-π, H-bonding, polar-polar, and Van Der Waals interactions were also involved in adsorption processes.
اظهر المزيد [+] اقل [-]Nitrogen budgets in Japan from 2000 to 2015: Decreasing trend of nitrogen loss to the environment and the challenge to further reduce nitrogen waste
2021
Hayashi, Kentaro | Shibata, Hideaki | Oita, Azusa | Nishina, Kazuya | Ito, Akihiko | Katagiri, Kiwamu | Shindo, Junko | Winiwarter, Wilfried
The benefits of the artificial fixation of reactive nitrogen (Nr, nitrogen [N] compounds other than dinitrogen), in the form of N fertilizers and materials are huge, while at the same time posing substantial threats to human and ecosystem health by the release of Nr to the environment. To achieve sustainable N use, Nr loss to the environment must be reduced. An N-budget approach at the national level would allow us to fully grasp the whole picture of Nr loss to the environment through the quantification of important N flows in the country. In this study, the N budgets in Japan were estimated from 2000 to 2015 using available statistics, datasets, and literature. The net N inflow to Japanese human sectors in 2010 was 6180 Gg N yr⁻¹ in total. With 420 Gg N yr⁻¹ accumulating in human settlements, 5760 Gg N yr⁻¹ was released from the human sector, of which 1960 Gg N yr⁻¹ was lost to the environment as Nr (64% to air and 36% to waters), and the remainder assumed as dinitrogen. Nr loss decreased in both atmospheric emissions and loss to terrestrial water over time. The distinct reduction in the atmospheric emissions of nitrogen oxides from transportation, at −4.3% yr⁻¹, was attributed to both emission controls and a decrease in energy consumption. Reductions in runoff and leaching from land as well as the discharge of treated water were found, at −1.0% yr⁻¹ for both. The aging of Japan's population coincided with the reductions in the per capita supply and consumption of food and energy. Future challenges for Japan lie in further reducing N waste and adapting its N flows in international trade to adopt more sustainable options considering the reduced demand due to the aging population.
اظهر المزيد [+] اقل [-]Regional variation in mercury bioaccumulation among NW Atlantic Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish
2021
Roose, Hunter | Paterson, Gordon | Frisk, Michael G. | Cerrato, Robert M. | Nitschke, Paul | Olin, Jill A.
Mercury (Hg) concentrations in fishes from the NW Atlantic Ocean pose concern due to the importance of this region to U.S. fisheries harvest. In this study, total Hg (THg) concentrations and nitrogen stable isotope (δ¹⁵N) values were quantified in muscle tissues sampled from Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish collected during a fishery-independent survey conducted in the NW Atlantic to compare bioaccumulation patterns between these species. Total Hg concentrations averaged (±SD) 0.4 ± 0.4 μg/g dry weight (d.w.) for L. chamaeleonticeps and 1.1 ± 0.7 μg/g d.w. for C. microps with <2% of all sampled fish, those >70 cm fork length, exceeding the most restrictive USEPA regulatory guidelines for human consumption (THg > 0.46 μg/g w.w.), when converted to wet weight concentrations. The THg concentrations reported here for individuals from the NW Atlantic stock are comparable to those reported for similarly sized individuals collected from the SW Atlantic stock but notably lower than those reported for Gulf of Mexico L. chamaeleonticeps, indicating different Hg exposure and assimilation kinetics for fish from the NW Atlantic, and highlights the broad geographic variability of Hg bioaccumulation among Tilefish stocks. Caulolatilus microps had higher δ¹⁵N values relative to L. chamaeleonticeps and a pattern of decreasing THg concentrations was also present from south to north across the study range. It is concluded that this trophic difference and spatial pattern in Tilefish THg concentrations emphasizes the habitat and resource partitioning mechanisms described for these sympatric species that permits their coexistence in the continental shelf environment. Importantly, regional variability in THg concentrations accentuate the possible roles of fine-scale biotic and abiotic processes that can act to regulate Hg bioaccumulation among individuals and species.
اظهر المزيد [+] اقل [-]