خيارات البحث
النتائج 341 - 350 من 626
Studies on the Effect of the Zinc Oxide Nano Additives along with Rice Bran Biodiesel Diesel Blends into CI Engine to Reduce Pollution النص الكامل
2024
Abhijeet Maurya, Bhanu Pratap Singh and Ajay Kumar Sharma
Pollution is a major problem for urban cities and their associated industries. The pollution caused by industries is mainly because of the burning of fossil fuels. Some of the pollutants can be controlled by plantation, but the oxides of nitrogen cannot be controlled only by planting trees. Some extra efforts are required to minimize pollution associated with the normal functioning of the shop floor of the industries concerned but not affecting its performance. The fuel that is best for industrial use is the need of the hour. In this study, zinc oxide nanoparticles are used as an additive to the rice bran blended biodiesel and analyze the combustion, performance, and emission parameters in the single-cylinder four-stroke engine water-cooled powered by diesel normally utilized in industries at a constant speed and compression ratio. The available fuel alternatives for testing consist of multiple combinations of diesel fuel and RB biodiesel, each with varying proportions. Furthermore, many gasoline mixes additionally have Zinc Oxide nanoparticles at a concentration of 30 parts per million (ppm). The findings suggest that the brake-specific fuel consumption of Rice bran biodiesel combined with Zinc oxide nano additive exhibits a consistent enhancement, but the brake thermal efficiency declines in comparison to diesel fuel. The concentrations of hydrocarbon (HC) and oxides of nitrogen (NOX) have been reduced. However, there has been a small rise in carbon dioxide (CO2) and carbon monoxide (CO). When rice bran biodiesel fuel combined with Zinc Oxide nano additive was used, an abnormally high exhaust gas temperature (EGT) was detected. According to this research, the addition of Zinc Oxide nano additive to rice bran biodiesel blends improves performance and decreases the noxious exhaust emissions generated by diesel engines.
اظهر المزيد [+] اقل [-]Spatio-Temporal Analysis of Aridity Trends and Shifts in Karnataka Over 63 Years (1958-2020): Insights into Climate Adaptation النص الكامل
2024
Sawant Sushant Anil, Dhananjayen and M. Sasi
Understanding aridity trends is crucial for climate adaptation strategies. This study analyzes the spatial and temporal fluctuations in aridity across Karnataka, India, over 63 years from 1958 to 2020 using the Aridity Index (AI). Monthly, seasonal, and annual AI values were calculated using precipitation and potential evapotranspiration data sourced from TerraClimate. The results indicate that approximately 74% (142,464 sq. km) of Karnataka is classified as dryland, ranging from semi-arid to dry subhumid zones, while 26% (49,416 sq. km) falls under more humid non-dryland areas. The Malnad and coastal regions are more humid compared to the predominantly semi-arid northern inland Karnataka. Temporal analysis between the periods 1958–1990 and 1991–2020 revealed that 6.24% of the land area shifted from semi-arid to dry subhumid, indicating increased moisture availability, whereas 0.43% shifted from dry subhumid to semi-arid, suggesting localized aridification. During the post-monsoon season, 14.12% of dryland areas transitioned to non-dryland, with substantial improvements in moisture availability observed in districts such as Uttara Kannada (59.21%) and Mandya (82.97%). Conversely, 1.5% of non-dryland areas converted to dryland, indicating localized decreases in water resources. Seasonal analysis revealed that 99.92% of the summer aridity status remained constant, while during the monsoon season, only 2.42% of dryland areas changed to non-dryland, reflecting stable monsoonal rainfall patterns. These findings highlight the significant influence of topography, monsoonal patterns, and water management on aridity dynamics in Karnataka. The study provides valuable insights for developing policies on climate adaptation, sustainable agriculture, and regional water resource management. Addressing the increasing trends in aridity is essential to reduce desertification risks and enhance the State’s resilience to climate change.
اظهر المزيد [+] اقل [-]Bioremediation of Manganese by Thermophilic Bacterial Isolates of Tapt Kund, Soldhar, and Gauri Kund Hot Springs of Uttarakhand, India النص الكامل
2024
A. Patil, S. Devi, Y. Sharma, S. Singh, N. K. Prabhakar, S. Agrawal and Mamta Arya
Manganese (Mn) contamination in groundwater is a global concern due to its harmful effects. The high concentration of Mn2+ in humans creates memory issues, decreased fertility, appetite loss, sleeplessness, sperm abnormalities, and ‘Manganism’. In this study, the isolation of thermophiles was followed by their assessment for MIC (minimum inhibitory concentration) and Mn bioremediation. We have isolated a total of 11 Mn-resistant bacterial strains of thermophiles with the identification of their bioremediation potential from the Tapt Kund, Soldhar, and Gauri Kund hot springs of Uttarakhand, India. Out of 11 strains, three isolates (TA8, SA9, and GA7) were identified with the highest metal resistance properties for toxic Mn2+. The metal tolerance capabilities of the strains were evaluated through MIC and the metal biosorption rate was estimated by the live cells bioremediation through thermophilic bacteria. ICP-MS (inductively coupled plasma mass spectrometry) was used to assess the Mn2+ removal rate of bacterial bioremediation. It turned out that every strain exhibited promising bioremediation potential and proved Mn-resistant. The bacterial strain TA8 exhibits the highest MIC (600 µg.L-1.) with a bioremediation rate of 98.34% for Mn2+. The bacterial strain SA9 has a MIC value of 525 µg.L-1, with a biosorption rate of 77.74% for Mn2+. The bacterial strain GA7 has a MIC of 475 µg.L-1, with an efficiency rate of 61.17% for Mn2+ removal. The most promising strain of thermophilic bacteria for Mn2+ bioremediation is the TA8, which has demonstrated the highest potential (98.34%) out of all the tested strains. The findings may have public health implications, as reducing manganese levels in groundwater can help mitigate health risks associated with Mn exposure. Also, this research enriches our knowledge of microbial bioremediation and its potential applications in environmental management. Ultimately, this research could offer a novel, economical, and environmentally beneficial approach to managing metal toxicity
اظهر المزيد [+] اقل [-]Diversity and Temporal Frequency of Records of the Herpetofauna of the Equatorial Seasonally Dry Tropical Forest in the Rural Community of Lucarqui, Piura, Northwestern Peru النص الكامل
2024
Juan Carlos Soto Quispe, Armando Fortunato Ugaz Cherre, Angel Enrique Llompart Navarro, Irwing Smith Saldaña Ugaz, José Manuel Marchena Dioses, Mariana Alexandra Montero Silva, and Robert Barrionuevo García,
Reptile and amphibian species in the Equatorial BTES face threats such as fragmentation, habitat loss, and climate change. Between 2019 and 2021, the richness and abundance of herpetofauna species was evaluated in the Lucarqui peasant community in Piura, northwest Peru. The objective of this research is to provide a preliminary list of species and understand their temporal frequency patterns. The study area was divided into specific zones: with anthropogenic activity, “crops” and “population centers”, where incidental catches and visual surveys were carried out, and without anthropogenic activity, “forests” and “ravines”, where transects of variable length and fixed width (2 m), the biological data obtained were analyzed with the iNEXT statistical tool, and a standardized methodology was provided for the calculation of the temporal frequency of recordings (FRT). The study identified 26 species: 7 amphibians and 19 reptiles. Amphibians dominated in abundance, while reptiles were rare. 85.71% (6) of amphibians and 47.36% (9) of registered reptiles are restricted to the Equatorial BTES. FRT patterns varied by habitat and time. These, along with wealth and abundance, were altered and reduced in areas influenced by human activity, crops, and population centers. It was found that there were still more species to be reported, especially reptiles. The study highlights the richness and vulnerability of the herpetofauna in the Equatorial BTES, reaffirming the urgent need for conservation strategies and continued research to ensure the protection and deep understanding of this valuable, fragile ecosystem.
اظهر المزيد [+] اقل [-]Agrivoltaics: Dual Use of Land for Energy and Food Sustainability النص الكامل
2024
Aminul Islam, Krishna Kishore Satapathy, Sushil Kumar Kothari, Biswajit Ghosh and Shankha Koley
Renewable energy has been of prime importance in the present era in meeting energy demand across all sectors. To meet this demand, solar energy has become a plausible option among scientists to reduce the fossil fuel effect and find an alternative solution. The main concern about large renewable energy installations on open land, mostly used for agricultural practices, is that they can displace different land uses and instigate the feed vs. fuel controversy in the long run. The current study reviewed the installation of solar panels on farmland’s benefits and challenges. The present study also reviewed the effect of solar panels on agricultural crop microclimate, soil, water condition, and crop growth and yields. Crop production and solar PV electricity generation from the same land space have numerous benefits, such as improving land productivity, reducing irrigation, managing soil, protecting crops from adverse climatic conditions (heat, frost, rainfall, etc.), increasing PV panel efficiency, and meeting house and farm electricity needs. Fewer demerits of agrivoltaics are to be studied in the future, such as keeping a suitable crop cycle, limited crop suitability, high expenses, and a lack of technical expertise. A big change to meet future energy demand without much impact on the environment is the dual use of open land for crop production and solar energy generation. To maximize crop yield, the impact of solar panels on crop yields has not been studied for numerous crops. We found that the optimum arrangement of solar panels admits varying levels of solar radiation according to crop needs. Sustainable agriculture and efficient solar energy generation can be possible in the same field by perfecting shade design and selecting suitable crops.
اظهر المزيد [+] اقل [-]A Review of Environmental Monitoring for Land Desertification Using Geospatial Analysis and Remote Sensing النص الكامل
2024
Ghaidaa Sabah Yousef, Hayder Dibs and Ahmed Samir Naje
Studying and evaluating desertification is essential due to its potential occurrence as a result of both natural and anthropogenic processes. Precise forecasting of forthcoming climate change perils is crucial for devising policies, action strategies, and mitigation measures at both the local and global scales. Remote sensing facilitates the examination, monitoring, and forecasting of several aspects of desertification. Throughout the years, many methodologies have been employed to investigate desertification through the utilization of Remote Sensing (RS). This study investigated the worldwide prevalence and temporal sequence of research that utilized remote sensing (RS) to investigate desertification. In addition, the study assessed the primary approaches and factors employed in the examination of desertification through the analysis of remote sensing data. The application of remote sensing (RS) in the investigation of desertification can be traced back to 1991. Between 2015 and 2020, an annual average of over 40 publications were published, indicating a substantial rise in the utilization and accessibility of remote sensing (RS) technology to monitor desertification. However, there is a significant disparity in the amount of research conducted in different fields. Asia demonstrates a substantially higher quantity of studies in contrast to America or Africa. China has conducted the highest number of research on desertification using remote sensing (RS) techniques. The Thematic Mapper (TM) sensor is the principal source of satellite data, specifically Landsat pictures. The primary techniques utilized for studying desertification are classification and monitoring of alterations. Furthermore, remote sensing methods commonly employ land cover/land use change and vegetation, together with its attributes such as the Normalised Difference Vegetation Index (NDVI), as the primary factors for studying desertification.
اظهر المزيد [+] اقل [-]Exploring long-term retention and reactivation of micropollutant biodegradation capacity النص الكامل
2024
Branco, Rita H.R. | Meulepas, Roel J.W. | Rijnaarts, Huub H.M. | Sutton, Nora B.
The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)—extracted from natural sources and acetate—increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities. Graphical abstract: (Figure presented.)
اظهر المزيد [+] اقل [-]Alternate Chemical Compounds as a Condensation Nucleus in Cloud Seeding النص الكامل
2024
Hasan M. Azeez, Nagham T. Ibraheem and Hazim H. Hussain
Cloud seeding involves boosting precipitation by releasing substances into the air that act as cloud condensation or ice nuclei. These substances encourage the development of clouds and precipitation. It’s like giving Mother Nature a gentle push to assist with rainfall in specific areas. The current work aimed to suggest Al2O3 as an alternate compound in cloud seeding rather than silver iodide. In this research, a unique approach is used to identify condensation nuclei, which play a crucial role in cloud formation and droplet growth. Various samples and four sources were included in the current study; refrigerated helfa powder, Himalayan salt, generator powder, and pollen, were analyzed using different physicochemical instruments. The proportions of chemical compounds in the samples show that there is 1.392% of Al2O3 in Refrigerated helfa which is the highest than in the other 3 sources, while the proportions of elements in the samples indicate that refrigerated helfa contains the lowest toxic compound, and although Al2O3 is insoluble in water, it is hygroscopic and can absorb 6.4% of humidity within 24 hours. As for the surface tension, refrigerated helfa shows lower density and surface tension than the other three sources with values of 0.9480 and 47.89 respectively. Al2O3 shows high humid absorptivity and refrigerated helfa can be used as a main source for Al2O3 which has a low effect on biota and is recommended for use in cloud seeding. However further work is recommended to be carried out in using Al2O3 as an alternative compound to silver iodide in cloud seeding.
اظهر المزيد [+] اقل [-]Effect of Fly Ash in Pyrolysis of HDPE, LDPE and PP Plastic Waste النص الكامل
2024
Y. B. Sonawane, M. R. Shindikar and M. Y. Khaladkar
Fly ash is generally obtained as a by-product from the combustion of coal and other waste materials. It is used for making bricks, but it has few limitations. The fly ash consists of Silica, Alumina, and other metal oxide components in minor quantities. Fly ash particles are observed in the range of nanometers to micrometers and can act as a catalyst in various reactions. The use of low-cost catalysts in the pyrolysis of thermoplastic waste would achieve a high percentage of low molecular weight fractions in liquid form which increases its applicability in commercial sectors. Hence, there is a need to enhance these fractions to achieve a sustainable approach in the catalytic pyrolysis process. fly ash, being a side product, is very cheap, so its effect on the plastic waste pyrolysis process has been studied. In the present research paper, Physical & chemical characterization of fly ash has been carried out. As fly ash consists of different metal oxides in proportion, its applicability in the process of pyrolysis of HDPE, LDPE, and PP waste has been studied. The different weight percent of fly ash (i.e., 5, 10, 15, 20) have been tried in all pyrolysis experiments. It has been observed that 5 wt % fly ash is effective for enhancing the yield of liquid fuel as compared to that without a catalyst. Liquid fuel obtained from catalytic pyrolysis of HDPE, LDPE, and PP waste with Fly ash consists of a high percent of low molecular weight fractions as compared to that of liquid fuel without catalyst, which has been concluded by calorific values & GC-MS result.
اظهر المزيد [+] اقل [-]Potential Use of Portulaca Plant Species in Removing Estradiol Hormone Pollutants in the Surface Water of Bengawan Solo River النص الكامل
2024
Siti Khoiriyah, Suranto, Prabang Setyono, Evi Gravitiani and Agung Hidayat
Bengawan Solo River water is a source of drinking water and raw materials for the government of Surakarta city, but the water has been mixed with domestic, industrial, and agricultural wastes. The waste contains estradiol-17 derived from urine and feces, both from livestock and humans as well as industries around the sub-watershed Bengawan Solo River. The content of estradiol-17 in the Bengawan Solo sub-watershed is quite high. This study is the first conducted in Bengawan Solo River to look at natural estrogens that are very rarely studied in the environment, which are likely could cause several health effects in humans and wildlife due to their relatively strong estrogenic potential and high levels in wastewater and river water. Therefore, research on the elimination of these compounds using effective, energy-efficient, and low-maintenance technologies for water treatment such as phytoremediation is highly expected. The purposes of this study were to identify estradiol, to measure the estradiol levels through HPLC tests as well as to test the effectiveness of phytoremediation with Portulaca plant as biological agents. The results show that the water of Bengawan Solo River contained estradiol substances ranging from 3.88 ppm to 5.76 ppm. The Portulaca plant species was effective at eliminating estrogenic waste up to 99.89%.
اظهر المزيد [+] اقل [-]